

### Schlotterbeck Block 117 Preble Street Portland, Me

#### SUBMITTAL COVER SHEET

Mechanical 23 00 00 2.10 Heat Recovery Resubmission \*Post heaters have Disconnect

**Date: June 4, 2016** 

**Contractor:** 

Landry/French Construction 160 Pleasant Hill Road Scarborough, Maine 04074

**Architect:** 

Goduti/Thomas 44 Oak Street Portland, Me 04101

**Engineer:** 

Mechanical Systems Engineers Royal River Center, Unit 10B 10 Forest Falls Road Yarmouth, Maine 04096







PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

### ERV

### **Energy Recovery Ventilator Belt Drive With Heating/Cooling Coils** Arrangement V

#### STANDARD CONSTRUCTION FEATURES:

Energy recovery wheel constructed of fluted synthetic media containing water selective molecular sieve desiccant - Cassette assembly slides out for easy access and consists of energy recovery wheel, drive motor, and drive components - Removable access doors provide access to all internal components - Ventilator cabinet consisting of a minimum 18 gauge galvanized steel housing mounted to a minimum 16 gauge galvanized steel base - Cabinet internally lined with 1" thick, 3 lb. density, FSK insulation - Two DWDI forward curved steel blowers mounted on vibration isolators - Blower wheel bearings rated at 200,000 hours average life - Blower wheels are factory adjusted to specified RPM -Standard size 2" thick, MERV 8 filters in supply and exhaust air streams -All electrical components pre-wired for single point power connection -Interlock disconnect on hinged control panel door.

Performance \*Bhp includes drive loss: 8%(S).7%(E)

| 1 011 | Office            | DIP HOIGE | 200 an | , O 1000. O         | 70(0), | , , , , , , , , , |    |
|-------|-------------------|-----------|--------|---------------------|--------|-------------------|----|
| Qty   | Catalog<br>Number | Airstream |        | Ext. SP**<br>(inwc) |        |                   |    |
|       | ED) / 4500        |           | 2955   | 1.00                | 1078   | 1.55              | 60 |
| 1     | ERV-4500          | Exhaust   | 2955   | 1.00                | 1180   | 1.84              | 60 |

Altitude (ft): 0 \*\*Static Pressure external to unit.

#### Motor Information

| INIOCOL HILLO | 11110 | LIOII |             |           |         |
|---------------|-------|-------|-------------|-----------|---------|
| Airstream     | HP    | RPM   | Volts/Ph/Hz | Enclosure | Mounted |
| Supply        | 2     | 1725  | 200/3/60    | ODP       | YES     |
| Exhaust 2     |       | 1725  | 200/3/00    | ODF       | 11.0    |

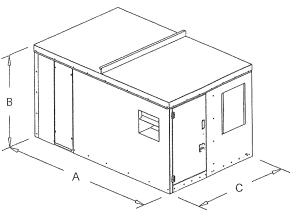
#### Electrical

| ERV<br>Full Load<br>Amps | Minimum<br>Circuit<br>Amps | MOCP* |
|--------------------------|----------------------------|-------|
| 18.48                    | 23.4                       | 30    |

| <ul> <li>Maximum Overload Circuit Protection</li> </ul> | on |
|---------------------------------------------------------|----|
|                                                         |    |

### Electric Post Heater\*\*

| <br>Heater<br>Voltage | Amps | kW<br>(4 Steps) |   |
|-----------------------|------|-----------------|---|
| 208                   | 37.8 | 13.6            | é |


<sup>\*\*</sup> Electric Post Heater requires separate power connection.

Donian Conditions

| Design Conditions |                             |       |        |                      |  |  |  |  |
|-------------------|-----------------------------|-------|--------|----------------------|--|--|--|--|
|                   | Out                         | door  | Indoor |                      |  |  |  |  |
|                   | Dry Bulb Wet Bulb (°F) (°F) |       |        | Relative<br>Humidity |  |  |  |  |
| Summer            | 94.0                        | 80.0  | 75.0   | 48.0%                |  |  |  |  |
| Winter            | -10.0                       | -10.2 | 70.0   | 30.0%                |  |  |  |  |

Supply Conditions

| Одрріу ОС |      |      | Wet Bulb<br>(°F) |       | Ratio | Humidity<br>Ratio<br>(lb/lb) |      | Enthalpy<br>(Btu/lb) |
|-----------|------|------|------------------|-------|-------|------------------------------|------|----------------------|
| Summer    | 0055 | 78.3 | 66.1             | 52.5% | 76.1  | 0.01087                      | 59.6 | 30.73                |
| Winter    | 2955 | 72.0 | 52.2             | 23.0% | 26.6  | 0.00380                      | 32.1 | 21.45                |



#### Dimensions (inches)

| Α | 105-1/2 |
|---|---------|
| В | 64-1/2  |
| С | 66-1/2  |

NOTE: Accessories may affect dimensions show

| - Commercial Commercia |          |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|------|
| Weight(lbs)***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shipping | 2731 | Unit | 2218 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |      |      |

<sup>\*\*\*</sup>Includes fan, motor & accessories.

#### Accessories:

Premium Efficiency Motor (Min. 86.5%) - Supply Premium Efficiency Motor (Min. 86.5%) - Exhaust DRIVES (1.5 SF) @ 1078 RPM (SUPL.) DRIVES (1.5 SF) @ 1180 RPM (EXH.) ELEC HTR 208V 13.6KW 24 KW COIL ADAPTOR KIT BD MOTORIZED INTAKE CTR PIVOT L-24V (OUT. A BD MOTORIZED INTAKE CTR PIVOT L-VC-24V (RE) BD (EXH. AIR DISCH) ROOF CURB RCGH 63 X 102-13.5H LORENIZED FINISH INTAKE HOOD **EXHAUST HOOD** HINGE ACC DOOR W/QTL **PURGE SECTION** DOUBLE WALL CONSTRTN ECON MODE-TEMP SENSR **ECON AUTO OVERRIDE** 

FROST CTRL-TIMED EXH 6 INCH E/R WHEEL

24 KW HEATER - SPECIAL

2" METAL MESH INTAKE HOOD FILTERS STD 90 DEGREE INTAKE HOOD





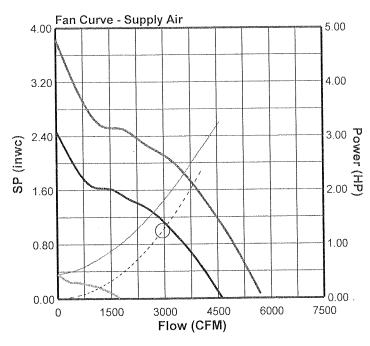


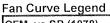
PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

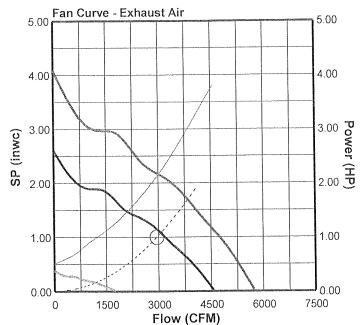
### ERV

Energy Recovery Ventilator Belt Drive With Heating/Cooling Coils Arrangement V


Performance \*Bhp includes drive loss: 8%(S),7%(E)


| Qty       | Catalog<br>Number | Airstream |      | Ext. SP**<br>(inwc) | Fan<br>RPM |      | FEG |
|-----------|-------------------|-----------|------|---------------------|------------|------|-----|
|           | EDV 4500          | Supply    | 2955 | 1.00                | 1078       | 1.55 | 60  |
| 1   ERV-4 | ERV-4500          | Exhaust   | 2955 | 1.00                | 1180       | 1.84 | 60  |

Altitude (ft): 0 \*\*Static Pressure external to unit.


Sound Data 8 Octave Bands dB (10<sup>-12</sup> Watts)

| Sound Dai | ta o | OC | lave | J D | anu | S u | DI | 10 | AAGLI |
|-----------|------|----|------|-----|-----|-----|----|----|-------|
| Airstream | 1    | 2  | 3    | 4   | 5   | 6   | 7  | 8  | LwA   |
| Supply    | 97   | 93 | 84   | 80  | 77  | 74  | 71 | 65 | 84    |
| Exhaust   | 100  | 97 | 88   | 84  | 82  | 78  | 75 | 70 | 88    |





| CFM vs SP (1078)   | and a supply  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MaxRPM( 1341)      | proportion and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MinRPM(413)        | PROPERTY OF THE PROPERTY OF TH |
| CFM vs HP          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Point of Operation | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| System Curve       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

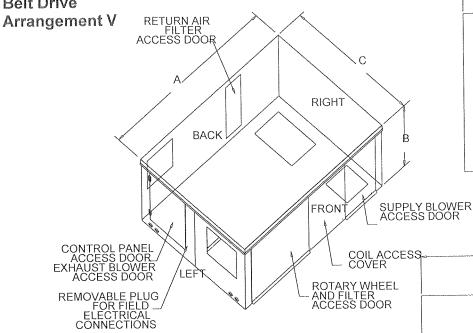


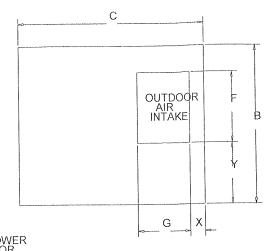
#### Fan Curve Legend

| CFM vs SP (1180)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MaxRPM( 1478)      | Periodo de la compansa de la compans |
| MinRPM(454)        | amagrass during and fine field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CFM vs HP          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Point of Operation | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| System Curve       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







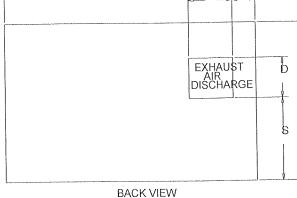


PROJECT: GRANITE - 117 PREBLE 3

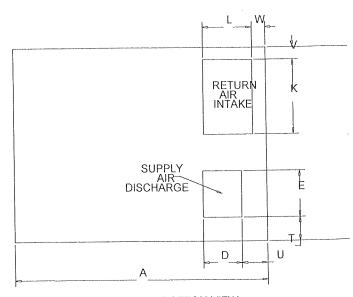
DATE: 5/18/2016

### ERV

Energy Recovery Ventilator With Heating/Cooling Coils Belt Drive







R

LEFT VIEW

Dimensions (inches)

| THE RESERVE OF THE PROPERTY OF |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4500    |  |  |
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105-1/2 |  |  |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64-1/2  |  |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66-1/2  |  |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13-7/16 |  |  |
| Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15-5/8  |  |  |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34      |  |  |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24      |  |  |
| K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26      |  |  |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18-3/4  |  |  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-5/16  |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38-5/8  |  |  |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10      |  |  |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-1/8   |  |  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-3/4   |  |  |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-1/8   |  |  |
| Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-1/4   |  |  |
| Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23-7/8  |  |  |





BOTTOM VIEW



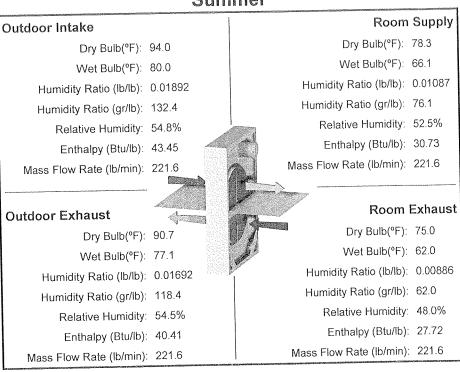




PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

### ERV


### **ERV 6" Wheel Performance Report**

Performance

| ſ | Catalog  | Flow   | (CFM)   | Wheel Effe | ctiveness |
|---|----------|--------|---------|------------|-----------|
|   | Number   | Supply | Exhaust | Sensible   | Latent    |
|   | ERV-4500 | 2955   | 2955    | 82.4%      | 80.1%     |

Performance shown is based on 6" deep Energy Recovery Wheel

### Summer



### **Outdoor Air Cooling Load Reduction**

| Cooling Load w/o ERV (tons) | 17.43 |
|-----------------------------|-------|
| Cooling Load w/ERV (tons)   | 3.34  |
| Energy Savings (tons)       | 14.09 |

### Winter

#### Room Supply **Outdoor Intake** Dry Bulb(°F): 57.9 Dry Bulb(°F): 1.0\* Wet Bulb(°F): 45.9 Wet Bulb(°F): -0.6\* Humidity Ratio (lb/lb): 0.00380 Humidity Ratio (lb/lb): 0.00041 Humidity Ratio (gr/lb): 26.6 Humidity Ratio (gr/lb): 2.9 Relative Humidity: 37.6% Relative Humidity: 49.6% Enthalpy (Btu/lb): 18.03 Enthalpy (Btu/lb): 0.67 Mass Flow Rate (lb/min): 221.6 Mass Flow Rate (lb/min): 221.6 Room Exhaust Outdoor Exhaust Dry Bulb(°F): 70.0 Dry Bulb(°F): 13.1 Wet Bulb(°F): 53.0 Wet Bulb(°F): 12.2 Humidity Ratio (lb/lb): 0.00465 Humidity Ratio (lb/lb): 0.00126 Humidity Ratio (gr/lb): 32.5 Humidity Ratio (gr/lb): 8.8 Relative Humidity: 30.0% Relative Humidity: 81.9% Enthalpy (Btu/lb): 21.89 Enthalpy (Btu/lb): 4.50 Mass Flow Rate (lb/min): 221.6 Mass Flow Rate (lb/min): 221.6

### **Outdoor Air Heating Load Reduction**

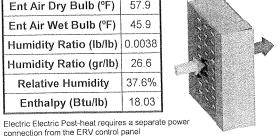
| Heating Load w/o ERV (Btu/hr) | 255,312 |
|-------------------------------|---------|
| Heating Load w/ERV (Btu/hr)   | 44,918  |
| Energy Savings (Btu/hr)       | 210,394 |







PROJECT: GRANITE - 117 PREBLE 3


DATE: 5/18/2016

# ERV

### Coil Performance

### **Electric Heating Coil**

| Ent Air Dry Bulb (°F)  | 57.9   |
|------------------------|--------|
| Ent Air Wet Bulb (°F)  | 45.9   |
| Humidity Ratio (lb/lb) | 0.0038 |
| Humidity Ratio (gr/lb) | 26.6   |
| Relative Humidity      | 37.6%  |
| Enthalpy (Btu/lb)      | 18.03  |



| Lvg Air Dry Bulb (°F)  | 72     |
|------------------------|--------|
| Lvg Air Wet Bulb (°F)  | 52.2   |
| Humidity Ratio (lb/lb) | 0.0038 |
| Humidity Ratio (gr/lb) | 26.6   |
| Relative Humidity      | 22.9%  |
| Enthalpy (Btu/lb)      | 21.43  |

Coil kW 13:6

\*Coil SP (inwc) is shown for information only. ERV unit performance data is adjusted for value shown.







PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

### ERV

### **Energy Recovery Ventilator Belt Drive With Heating/Cooling Coils** Arrangement V

### STANDARD CONSTRUCTION FEATURES:

Energy recovery wheel constructed of fluted synthetic media containing water selective molecular sieve desiccant - Cassette assembly slides out for easy access and consists of energy recovery wheel, drive motor, and drive components - Removable access doors provide access to all internal components - Ventilator cabinet consisting of a minimum 18 gauge galvanized steel housing mounted to a minimum 16 gauge galvanized steel base - Cabinet internally lined with 1" thick, 3 lb. density, FSK insulation - Two DWDI forward curved steel blowers mounted on vibration isolators - Blower wheel bearings rated at 200,000 hours average life - Blower wheels are factory adjusted to specified RPM -Standard size 2" thick, MERV 8 filters in supply and exhaust air streams -All electrical components pre-wired for single point power connection -Interlock disconnect on hinged control panel door.

Performance \*Bhp includes drive loss: 10%(S),9%(E)

| Qty | Catalog<br>Number | Airstream |      | Ext. SP**<br>(inwc) |      |      | FEG       |
|-----|-------------------|-----------|------|---------------------|------|------|-----------|
|     | ED) / 4500        |           | 1425 | 1.00                | 1481 | .865 | n/a(<1HP) |
| 1   | ERV-1500          | Exhaust   | 1425 | 1.00                | 1622 | 1.21 | <50       |

Altitude (ft): 0 \*\*Static Pressure external to unit.

#### Motor Information

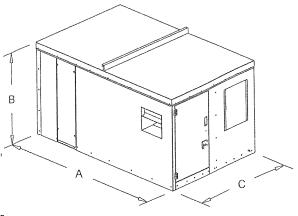
| Airstream | HP    | RPM  | Volts/Ph/Hz | Enclosure | Mounted |
|-----------|-------|------|-------------|-----------|---------|
| Supply    | 1-1/2 | 1725 | 200/3/60    | ODP       | YES     |
| Exhaust   |       |      | 200/3/00    | ODI       | 120     |

#### Electrical

| ERV<br>Full Load<br>Amps | Minimum<br>Circuit<br>Amps | MOCP* |
|--------------------------|----------------------------|-------|
| 15.38                    | 19:23                      | ,25   |

<sup>\*</sup> Maximum Overload Circuit Protection

Electric Post Heater\*\*


| Heater<br>Voltage | Amps | kW<br>(4 Steps) |   |
|-------------------|------|-----------------|---|
| 208               | 25.0 | سور             | - |

<sup>\*\*</sup> Electric Post Heater requires separate power connection.

#### Docian Conditions

|   | Design Conditions |                  |                  |      |                      |  |  |
|---|-------------------|------------------|------------------|------|----------------------|--|--|
| ſ |                   | Outdoor          |                  | ind  | oor                  |  |  |
|   |                   | Dry Bulb<br>(°F) | Wet Bulb<br>(°F) |      | Relative<br>Humidity |  |  |
|   | Summer            | 94.0             | 80.0             | 75.0 | 48.0%                |  |  |
|   | Winter            | -10.0            | -10.2            | 70.0 | 30.0%                |  |  |

| Supply Co |      | Dry Bulb | Wet Bulb<br>(°F) |       | Ratio | Humidity<br>Ratio<br>(lb/lb) |      | Enthalpy<br>(Btu/lb) |
|-----------|------|----------|------------------|-------|-------|------------------------------|------|----------------------|
| Summer    | 4.05 | 79.4     | 67.2             | 53.6% | 80.4  | 0.01149                      | 61.2 | 31.67                |
| Winter    | 1425 | 72.0     | 51.7             | 21.4% | 24.8  | 0.00354                      | 30.0 | 21.17                |



#### Dimensions (inches)

| Α | 90-1/4 |
|---|--------|
| В | 40-1/2 |
| С | 49-1/4 |

NOTE: Accessories may affect dimensions shown

| Weight(lbs)*** | Shipping | 1676 | Unit | 1351 |
|----------------|----------|------|------|------|
|                |          |      |      |      |

<sup>\*\*\*</sup>Includes fan, motor & accessories.

#### Accessories:

Premium Efficiency Motor (Min. 86.5%) - Supply Premium Efficiency Motor (Min. 86.5%) - Exhaust DRIVES (1.5 SF) @ 1481 RPM (SUPL.) DRIVES (1.5 SF) @ 1622 RPM (EXH.) ELEC HTR 208V 9.0KW IN KIN COIL ADAPTOR KIT BD MOTORIZED INTAKE CTR PIVOT L-24V (OUT. A BD MOTORIZED INTAKE CTR PIVOT L-VC-24V (RE1 BD (EXH. AIR DISCH) ROOF CURB RCGH 45.75 X 86.75-13.5H LORENIZED FINISH **INTAKE HOOD EXHAUST HOOD** HINGE ACC DOOR W/QTL **PURGE SECTION** DOUBLE WALL CONSTRTN ECON MODE-TEMP SENSR **ECON AUTO OVERRIDE** FROST CTRL-TIMED EXH

6 INCH E/R WHEEL 11 KW HEATER - SPECIAL

2" METAL MESH INTAKE HOOD FILTERS STD 90 DEGREE INTAKE HOOD





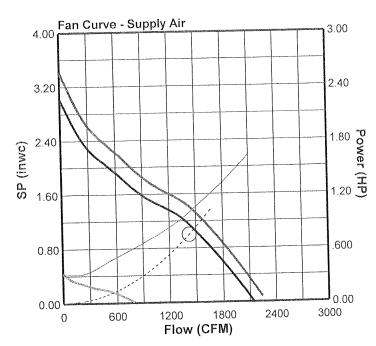


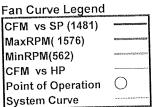
PROJECT: GRANITE - 117 PREBLE 3

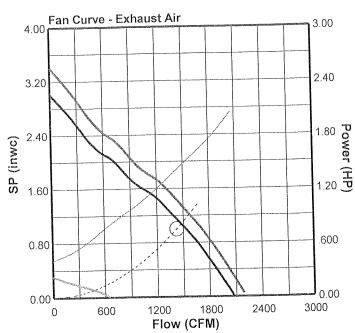
DATE: 5/18/2016

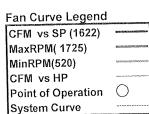
# ERV

Energy Recovery Ventilator Belt Drive With Heating/Cooling Coils Arrangement V


Performance \*Bhp includes drive loss: 10%(S),9%(E)


| Qty | Catalog<br>Number | Airstream |      | Ext. SP**<br>(inwc) |      |      | FEG       |
|-----|-------------------|-----------|------|---------------------|------|------|-----------|
|     |                   | Supply    | 1425 | 1.00                | 1481 | .865 | n/a(<1HP) |
| 1   | ERV-1500          | Exhaust   | 1425 | 1.00                | 1622 | 1.21 | <50       |


Altitude (ft): 0 \*\*Static Pressure external to unit.


Sound Data 8 Octave Bands dB (10<sup>-12</sup> Watts)

|   | ouna Dai  | a o | OCI | ive | Da | nua | · CIL | , ( , | · · | Vacco |
|---|-----------|-----|-----|-----|----|-----|-------|-------|-----|-------|
|   | Airstream | 1   | 2   | 3   | 4  | 5   | 6     | 7     | 8   | LwA   |
|   | Supply    | 99  | 98  | 89  | 82 | 77  | 76    | 73    | 70  | 87    |
| Ì | Exhaust   | 101 | 101 | 93  | 85 | 80  | 79    | 77    | 73  | 91    |













c(UL)us



MARK: HRV2

PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

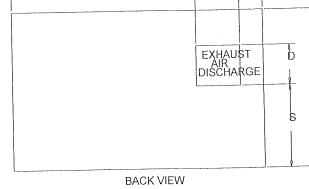
### ERV

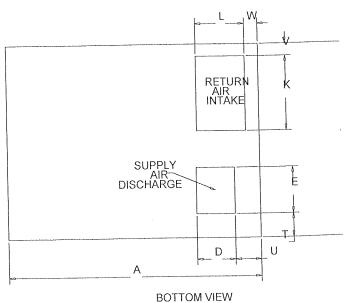
**Energy Recovery Ventilator** With Heating/Cooling Coils **Belt Drive** 

RETURN AIR FILTER ACCESS DOOR Arrangement V С RIGHT BACK SUPPLY BLOWER ACCESS DOOR FRON CONTROL PANEL ACCESS DOOR EXHAUST BLOWER ACCESS DOOR COIL ACCESS COVER ROTARY WHEEL AND FILTER ACCESS DOOR

С OUTDOOR AIR INTAKE Χ G LEFT VIEW

R


Е


Dimensions (inches)

REMOVABLE PLUG FOR FIELD \_\_ ELECTRICAL CONNECTIONS

| Size | 1500     |
|------|----------|
| Α    | 90-3/16  |
| В    | 40-13/32 |
| С    | 49-9/32  |
| D    | 10-1/4   |
| Е    | 11-13/16 |
| F    | 18       |
| G    | 14       |
| Κ    | 19       |
| L    | 13       |
| R    | 6-1/8    |
| S    | 21-1/8   |
| Т    | 6-1/16   |
| U    | 6-11/16  |
| V    | 3-5/8    |
| W    | 3-1/4    |
| Х    | 4-1/16   |
| Υ    | 15-5/8   |

v6.6.95.13147











PROJECT: GRANITE - 117 PREBLE 3

DATE: 5/18/2016

### ERV

### **ERV 6" Wheel Performance Report**

Performance

| Catalog  | Flow   | Flow (CFM) Wheel Effectivene |          |        |
|----------|--------|------------------------------|----------|--------|
| Number   | Supply | Exhaust                      | Sensible | Latent |
| ERV-1500 | 1425   | 1425                         | 77.0%    | 73.9%  |

Performance shown is based on 6" deep Energy Recovery Wheel

Mass Flow Rate (Ib/min): 106.9 |
Adjusted to the energy wheel frost formation threshold temperature 46.6.95.13147

#### Summer

#### Room Supply Outdoor Intake Dry Bulb(°F): 79.4 Dry Bulb(°F): 94.0 Wet Bulb(°F): 67.2 Wet Bulb(°F): 80.0 Humidity Ratio (lb/lb): 0.01149 Humidity Ratio (lb/lb): 0.01892 Humidity Ratio (gr/lb): 80.4 Humidity Ratio (gr/lb): 132.4 Relative Humidity: 54.8% Relative Humidity: 53.6% Enthalpy (Btu/lb): 31.67 Enthalpy (Btu/lb): 43.45 Mass Flow Rate (lb/min): 106.9 Mass Flow Rate (lb/min): 106.9 Room Exhaust **Outdoor Exhaust** Dry Bulb(°F): 75.0 Dry Bulb(°F): 89.6 Wet Bulb(°F): 62.0 Wet Bulb(°F): 76.1 Humidity Ratio (lb/lb): 0.00886 Humidity Ratio (lb/lb): 0.01629 Humidity Ratio (gr/lb): 62.0 Humidity Ratio (gr/lb): 114.0 Relative Humidity: 48.0% Relative Humidity: 54.3% Enthalpy (Btu/lb): 27.72 Enthalpy (Btu/lb): 39.47 Mass Flow Rate (lb/min): 106.9 Mass Flow Rate (lb/min): 106.9

#### **Outdoor Air Cooling Load Reduction**

| Cooling Load w/o ERV (tons) | 8.41 |  |
|-----------------------------|------|--|
| Cooling Load w/ERV (tons)   | 2.11 |  |
| Energy Savings (tons)       | 6.29 |  |

### Winter

| Outdoor Intake           |         | Room                     | Supply  |
|--------------------------|---------|--------------------------|---------|
| Dry Bulb(°F):            | -0.7*   | Dry Bulb(°F):            | 53.7    |
| Wet Bulb(°F):            | -2.0*   | Wet Bulb(°F):            | 43.3    |
| Humidity Ratio (lb/lb):  | 0.00041 | Humidity Ratio (lb/lb):  | 0.00354 |
| Humidity Ratio (gr/lb):  | 2.9     | Humidity Ratio (gr/lb):  | 24.8    |
| Relative Humidity:       | 54.1%   | Relative Humidity:       | 40.7%   |
| Enthalpy (Btu/lb):       | 0.27    | Enthalpy (Btu/lb):       | 16.74   |
| Mass Flow Rate (lb/min): | 106.9   | Mass Flow Rate (lb/min): | 106.9   |
| Outdoor Exhaust          |         | Room E                   | Exhaust |
| Dry Bulb(°F):            | 15.6    | Dry Bulb(°F):            | 70.0    |
| Wet Bulb(°F):            | 14.9    | Wet Bulb(°F):            | 53.0    |
| Humidity Ratio (lb/lb):  | 0.00152 | Humidity Ratio (lb/lb):  | 0.00465 |
| Humidity Ratio (gr/lb):  | 10.6    | Humidity Ratio (gr/lb):  | 32.5    |
| Relative Humidity:       | 87.7%   | Relative Humidity:       | 30.0%   |
| Enthalpy (Btu/lb):       | 5.37    | Enthalpy (Btu/lb):       | 21.89   |

Mass Flow Rate (lb/min): 106.9

#### **Outdoor Air Heating Load Reduction**

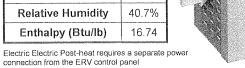
| Heating Load w/o ERV (Btu/hr) | 123,120 |
|-------------------------------|---------|
| Heating Load w/ERV (Btu/hr)   | 28,373  |
| Energy Savings (Btu/hr)       | 94,747  |







PROJECT: GRANITE - 117 PREBLE 3


DATE: 5/18/2016

### ERV

### Coil Performance

### **Electric Heating Coil**

| Ent Air Dry Bulb (°F)  | 53.7    |
|------------------------|---------|
| Ent Air Wet Bulb (°F)  | 43.3    |
| Humidity Ratio (lb/lb) | 0.00354 |
| Humidity Ratio (gr/lb) | 24.8    |
| Relative Humidity      | 40.7%   |
| Enthalpy (Btu/lb)      | 16.74   |





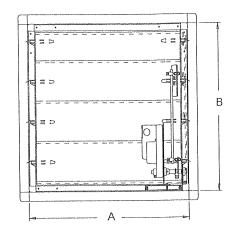
| Lvg Air Dry Bulb (°F)  | 72      |
|------------------------|---------|
| Lvg Air Wet Bulb (°F)  | 51.7    |
| Humidity Ratio (lb/lb) | 0.00354 |
| Humidity Ratio (gr/lb) | 24.8    |
| Relative Humidity      | 21.3%   |
| Enthalpy (Btu/lb)      | 21.15   |

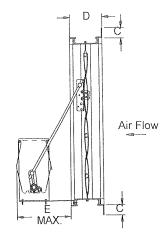
Coil kW 9

\*Coil SP (inwc) is shown for information only. ERV unit performance data is adjusted for value shown.



DATE: 5/18/2016


# **BDMICL**


# **Backdraft Motorized Center Pivot Low Leakage Damper**

### STANDARD CONSTRUCTION FEATURES:

14 ga galvanized steel blades -16 ga galvanized steel frame -1/2" plated steel hex hinge pins -Stainless steel sleeve bearings -24 VAC Non-overloading motor.

Notes: Max operating temperature - 130 Deg F (50 Deg C).

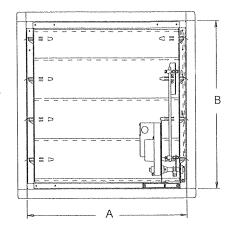


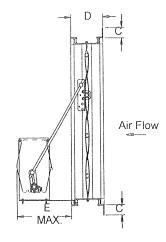


| Jimonono (moneo) |     |                      |        |        |       |   |       |  |  |
|------------------|-----|----------------------|--------|--------|-------|---|-------|--|--|
| Mark             | Qty | Description          | Α      | В      | С     | D | E     |  |  |
| HRV1             | 1   | BDMICL-24V (OUT. AIR | 23-3/4 | 33-3/4 | 1-1/2 | 5 | 8-1/4 |  |  |
| HRV2             | 1   | BDMICL-24V (OUT. AIR | 13-3/4 | 17-3/4 | 1-1/2 | 5 | 8-1/4 |  |  |



DATE: 5/18/2016


# **BDMICL-VC**


# **Backdraft Motorized Center Pivot Low Leakage Damper**

### STANDARD CONSTRUCTION FEATURES:

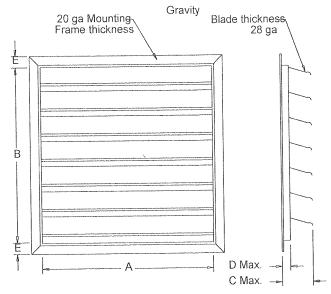
14 ga galvanized steel blades -16 ga galvanized steel frame -1/2" plated steel hex hinge pin -Stainless steel sleeve bearing -24VAC Non-overloading motor.

Notes: Max operating temperature - 130 Deg F (50 Deg C).





| *************************************** |     |                       |        |        |       |   |       |  |  |  |
|-----------------------------------------|-----|-----------------------|--------|--------|-------|---|-------|--|--|--|
| Mark                                    | Qty | Description           | Α      | В      | С     | D | E     |  |  |  |
| HRV1                                    | 1   | BDMICL-VC-24V (RET. A | 25-3/4 | 18-1/2 | 1-1/2 | 5 | 8-1/4 |  |  |  |
| HRV2                                    | 1   | BDMICL-VC-24V (RET. A | 18-3/4 | 12-3/4 | 1-1/2 | 5 | 8-1/4 |  |  |  |




COOK

DATE: 5/18/2016

### BD

### **Automatic Backdraft Damper**

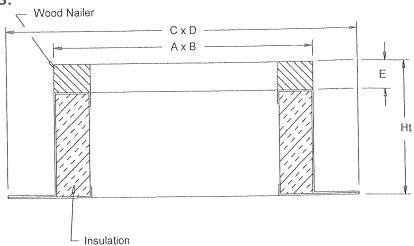


| Jillionotto (monoc) |     |                     |         |          |       |       |       |  |  |
|---------------------|-----|---------------------|---------|----------|-------|-------|-------|--|--|
| Mark                | Qty | Description         | Α       | В        | С     | D     | Е     |  |  |
| HRV1                | 1   | BD (EXH. AIR DISCH) | 15-1/8  | 12-15/16 | 6-3/4 | 1-3/4 | 1-1/2 |  |  |
| HRV2                | 1   | BD (EXH. AIR DISCH) | 11-5/16 | 9-3/4    | 6-3/4 | 1-3/4 | 1-1/2 |  |  |



DATE: 5/18/2016

# RCGH


### Galvanized Steel Heavy Duty Roof Curb

STANDARD CONSTRUCTION FEATURES:

1-1/2", 3 lbs. density thermal and acoustical insulation - Continuously welded corners - wood nailer.

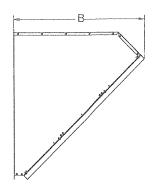
Options:(As noted below\*)

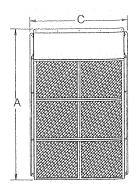
1) No wood nailer (deduct 1-1/2" for actual height)



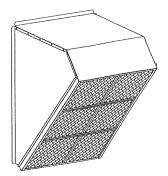
| Difficilisions (meres) |     |                    |      |          |        |        |        |    |       |           |
|------------------------|-----|--------------------|------|----------|--------|--------|--------|----|-------|-----------|
| Mark                   | Qtv | Description        | Ht   | Options* | Α      | В      | С      | D  | E     | Steel Ga. |
| HRV1                   | 1   | RCGH 63 X 102      | 13.5 | -        | 102    | 63     | 106    | 67 | 1-1/2 | 14        |
| HRV2                   | 1   | RCGH 45.75 X 86.75 | 13.5 | -        | 86-3/4 | 45-3/4 | 90-3/4 |    |       | 16        |




DATE: 5/18/2016


# **INTAKE HOOD**

### **Galvanized Steel**


STANDARD CONSTRUCTION FEATURES:

Minimum 18 Ga galv steel panels - 2" thick washable, removable aluminum filters



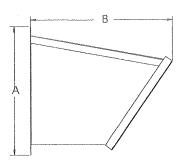


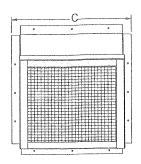
PROJECT: GRANITE - 117 PREBLE 3

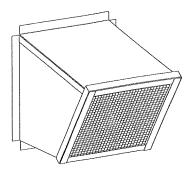


| Mark | Qty | Description | Α        | В       | С  |
|------|-----|-------------|----------|---------|----|
| HRV1 | 1   | INTAKE HOOD | 43-3/16  | 41-7/16 | 33 |
| HRV2 | 1   | INTAKE HOOD | 24-13/16 | 24-1/4  | 23 |




DATE: 5/18/2016


# **EXHAUST HOOD**


### **Galvanized Steel**

STANDARD CONSTRUCTION FEATURES:

Minimum 18 Ga Galv Steel - Birdscreen covering exhaust - integral damper mounting flange







| Mark | Qty | Description  | А       | В      | С       |
|------|-----|--------------|---------|--------|---------|
| HRV1 | 1   | EXHAUST HOOD | 21-3/4  | 22-7/8 | 21-9/16 |
| HRV2 | 1   | EXHAUST HOOD | 18-3/16 | 20-5/8 | 17-3/4  |