STRUCTURAL ANALYSIS REPORT

For

NM03XC067

ONE CITY CENTER

One City Center Portland, ME 04101

Antennas on the Roof; Equipment inside the Penthouse

Prepared for:

1 INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641

1 ROBBINS ROAD WESTFORD, MA 01886 TEL: (978) 952-1600

<u>Dated:</u> <u>December 20, 2012</u>

Prepared by:

Hudson Design Group ILC

1600 Osgood Street Bldg. 20N Suite 3090 North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586 www.hudsondesigngrouplic.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by Sprint to conduct a structural evaluation of the structure supporting the proposed Sprint equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations pertaining to the support of Sprint's proposed equipment.

This office conducted an on-site visual survey of the above area on November 12, 2012. Attendees included Bradley Loeb (HDG-Field Technician).

CONCLUSION SUMMARY:

Building Plans prepared by William Dorsky Associates, Architects, Planner were available for our use. A limited visual survey of the structure was completed in or near the areas of the Proposed Work.

The structural analysis/PE certification completed by Hudson Design Group LLC (HDG) on behalf of ALU was inclusive of the equipment support structures, antenna masts, antenna mounts, and all other aspects of the structure applicable to the installation of the network vision antenna system and BTS and that the site will support the Sprint Network Vision Antennas and RRH's deployment for the interim and final equipment scenarios.

Existing Penthouse Floor:

Based on our evaluation, we have determined that the penthouse floor **IS CAPABLE** of supporting the proposed Sprint Equipment Cabinets.

Existing Antenna Mounts:

Based on our evaluation, we have determined that the penthouse roof **IS CAPABLE** of supporting the proposed Sprint Antennas and RRH's.

HDG recommends replacing the existing antenna support pipes (Alpha & Beta sectors) to accommodate the new larger antennas and RRH's. Reference the latest drawings for the new equipment locations.

A summary of the proposed support types and attachment locations are as follows:

- (3) New APXVSPP18-C-A20 (800/1900 MHz) RFS antennas (One per sector) (Wt. = 57 lbs. /each)...Supported by the new/existing steel pipes.
- (3) FD-RRH-2x50-800 (1 per sector) (Wt. = 50 lbs. /each)...Mounted on new unistrut components.
- (3) FD-RRH-4x40-1900 (1 per sector) (Wt. = 50 lbs. /each)...Mounted on new unistrut components.
- (1) 60ECv2 Battery Back-Up Cabinet (Wt. = 2830 lbs.)...Mounted inside the existing penthouse.
- (1) Alcatel-Lucent 9928 Outdoor Cabinet (Wt. = 1390 lbs.)...Mounted inside the existing penthouse.

Referenced documents are attached.

DESIGN CRITERIA:

1. International Building Code 2009, ASCE 7-10 Minimum Design Loads for Buildings and Other Structures.

Wind Analysis:

Reference Wind Speed:

100 MPH

(FIG 26.5-1C; ASCE 7-10)

Category:

С

(26.7.3; ASCE 7-10)

Gust Effect Factor (G):

0.85

(26.9.1; ASCE 7-10)

Force Coefficient (Cf): F = qz * G * Cf * Af: Varies

(FIG 29.5-1 thru 29.5-3; ASCE 7-10)

(Equation 29.5-1; ASCE 7-10)

Snow Loading:

Ground Snow Load (Pg):

50 psf

(FIG 7-1; ASCE 7-10)

Flat Roof Snow Load (Pf):

31.5 psf

Pf = 0.7 * Ce * Ct * I * Pg

(Equation 7.3-1; ASCE 7-10)

Ce=0.9; Ct=1.0; I=1.0

2. EIA/TIA -222- G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County:

Cumberland

Wind Load:

100 mph

3. Approximate height above grade to antennas:

163'-0" +/-

PENTHOUSE FLOOR & ROOF CONSTRUCTION:

The penthouse floor and roof consists of a 7 $\frac{1}{2}$ " post tensioned concrete slab supported by reinforced concrete beams and columns. (See the attached building plans).

EQUIPMENT SUPPORT RECOMMENDATIONS:

HDG recommends that the Alcatel-Lucent 9928 Outdoor Cabinet and Battery Back-Up Cabinets be supported by the existing mechanical penthouse floor.

ANTENNA SUPPORT RECOMMENDATIONS:

- The new Gamma sector antenna is proposed to be supported by the existing steel pipe secured to the roof.
- The new Alpha and Beta sector antennas are proposed to be supported on new steel pipes and mounting brackets secured to the existing ballast mounts.

See the attached calculations for ballast requirements.

RRH SUPPORT RECOMMENDATIONS:

- The new Gamma sector RRH's are proposed to be supported by new unistrut components secured to the parapet.
- The new Alpha and Beta sector RRH's are proposed to be supported by new unistrut components secured to the existing ballast mounts.

<u>Limitations and assumptions:</u>

- 1. Equipment and locations should not deviate from the construction drawings without written approval of the engineer of record.
- 2. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 5. All detail requirements will be designed and furnished in the construction drawings.
- 6. Mount all equipment per manufacturer's specifications.

<u>Limitations and assumptions:</u>

- 1. Equipment and locations should not deviate from the construction drawings without written approval of the engineer of record.
- 2. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 5. All detail requirements will be designed and furnished in the construction drawings.
- 6. Mount all equipment per manufacturer's specifications.

ANTENNA LOCATIONS:

Photo 1: Sample photo showing the existing antennas.

Photo 2: Sample photo showing the existing antenna.

EXISTING EQUIPMENT:

Photo 3: Sample photo showing the existing Sprint equipment.

Photo 4: Sample photo showing the existing Sprint equipment.

Calculations

Project Name: ONE CITY CENTER **Project Number:** NM03XC067

Designed By: AA

Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$$K_z$$
= 2.01 (z/z_g) $^{2/\alpha}$ z= 163 (ft) z_g = 900 (ft) α = 9.5

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

 $K_{zt} = [1 + (K_e K_t/K_h)]^2$

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

 $K_h = e^{(f*z/H)}$

Project Name: ONE CITY CENTER Project Number: NM03XC067

Designed By: AA Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

h= 163

Gh= 0.563

2.6.7.2 Guyed Masts

Gh= 0.85

2.6.7.3 Pole Structures

Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh=

1.35

Gh=

1.35

Project Name: ONE CITY CENTER
Project Number: NM03XC067

Designed By: AA Checked By: MSC

2.6.8 Design Ice Thickness:

$$\begin{aligned} \mathbf{t}_{iz} &= 2.0 * \mathbf{t}_{i} * I * \mathbf{K}_{iz} * \left(\mathbf{K}_{zt} \right)^{0.35} & \mathbf{t}_{i} &= \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$K_{iz} = [z/33]^{0.10} \le 1.4$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$

$$Dc = 72 \text{ (in) Largest Dim of Member}$$

$$A_{iz} = 548.03$$

2.6.9 Design Wind Load:

F= qz*Gh*(EPA's)

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$
 $K_z = 1.403$
 $K_{zt} = 1$
 $q_z = 34.11$
 $K_d = 0.95$
 $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Project Name: ONE CITY CENTER
Project Number: NM03XC067

Designed By: AA

Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$$

Dp = Outside Diameter or Out to Out: 0.2

0.2 feet

C= 23.69

Cf= 1.2

Appurtenances	Height	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
Antenna	72	11.8	7	5.90	326.07 (lbs)
RRH 1900	25.1	11.1	10.69	1.93	106.93 (lbs)
RRH 800	19.7	13	10.9	1.78	98.29 (lbs)
Item No.4	0	0	0	0.00	0.00 (lbs)
Item No.5	0	0	0	0.00	0.00 (lbs)

Site Name:

ONE CITY CENTER

Site No.

NM03XC067

Done by:

AA

Checked by: MSC

Date:

12/20/2012

Calculate Total Ballast Required for Ballast Mount

Alpha & Beta Sectors (Sled 1)

WIND FORCES

F antenna =

326.7 lbs.

FRRH =

106.93 lbs.

FRRH

98.29 lbs.

Antenna Height =

7 ft

RRH & Surge Height =

4 ft

Wo Wb Fc Fc Fc Fc Tft

Overturning at Ballast

Moment =

3729.336 lbs.-ft

S.F. 1.2

Hold Down Force =

532.76 lbs.

Per Side

Wa Ballast

Equipment

Frame =

150 lbs.

Total Ballast Required Wa=

382.76 lbs.

Blocks Required Wa =

11 Assumed 38lbs Block (4"x8"x16" Solid)

Wb Ballast

Equipment

 Frame
 150 lbs.

 Antennas
 57 lbs.

 RRH
 50 lbs.

 RRH
 50 lbs.

 Total =
 307 lbs.

Total Ballast Required Wb =

225.76 lbs.

Blocks Required Wb=

6 Assumed 38lbs Block (4"x8"x16" Solid)

AREA/LOAD = (17x38Lbs.) + 150 Lbs + 307 Lbs = 1103 Lbs = 17.23 PSF

Site Name:

ONE CITY CENTER

Site No.

NM03XC067

Done by:

AA

Checked by: MSC

Date:

12/20/2012

Calculate Total Ballast Required for Ballast Mount Alpha & Beta Sectors (Sled 2)

WIND FORCES

F antenna =

326.7 lbs.

F RRH =

0 lbs.

F RRH

0 lbs.

Antenna Height =

7 ft

RRH & Surge Height =

4 ft

Fc Length = 7 ft

Overturning at Ballast

Moment =

2744.28 lbs.-ft

S.F. 1.2

Hold Down Force =

392.04 lbs.

Per Side

Wa

Wa Ballast

Equipment

Frame =

150 lbs.

Total Ballast Required Wa=

242.04 lbs.

Blocks Required Wa =

7 Assumed 38lbs Block (4"x8"x16" Solid)

Wb Ballast

Equipment

Frame

150 lbs.

Antennas

57 lbs.

RRH

0 lbs.

RRH

0 lbs.

Total =

207 lbs.

Total Ballast Required Wb =

185.04 lbs.

Blocks Required Wb=

5 Assumed 38lbs Block (4"x8"x16" Solid)

AREA/LOAD = (12×38 Lbs.) + 150 Lbs + 207 Lbs. = 12.7 PSF

Project: NMO3xCO67 Location: Antenna Support Pipe (Gamma Sector) Multi-Loaded Multi-Span Beam [2009 International Building Code(AISC 13th Ed ASD)] Pipe 3 Std. x 10.0 FT (10 + 0) / ASTM A53-GR.B Section Adequate By: 43.6% Controlling Factor: Moment **DEFLECTIONS** Live Load Dead Load Total Load Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240 REACTIONS Α Live Load 326 lb Dead Load 76 lb Total Load 402 lb Bearing Length 0.40 in **BEAM DATA** Left 10 ft Span Length Unbraced Length-Top 0 ft Unbraced Length-Bottom 10 ft STEEL PROPERTIES Pipe 3 Std. - A53-GR.B Properties: Steel Yield Strength: Fy = 35 ksi Modulus of Elasticity: E = 29000 ksi Tube Steel Section (X Axis): 3.5 in dx =Tube Steel Section (Y Axis): dy = 3.5 in Tube Steel Wall Thickness: 0.201 in t = Area: 2.08 in2 A = Moment of Inertia (X Axis): Ix = 2.85 in4 Section Modulus (X Axis): Sx = 1.63 in3 Plastic Section Modulus: Z = 2.19 in3 Design Properties per AISC 13th Edition Steel Manual: Flange Buckling Ratio: FBR = 17.41 AFBR = Allowable Flange Buckling Ratio: 58 Allowable Flange Buckling Ratio non-compact: AFBR_NC = 256.86 Nominal Flexural Strength w/ Safety Factor: Mn = 3825 ft-lb Controlling Equation: F8-1 Shear Buckling Stress Coefficient Eqn. G6-2a: Fcr = 21 ksi Nominal Shear Strength w/ Safety Factor: Vn = 13078 lb

Controlling Moment: -2663 ft-lb Over right support of span 1 (Left Span)

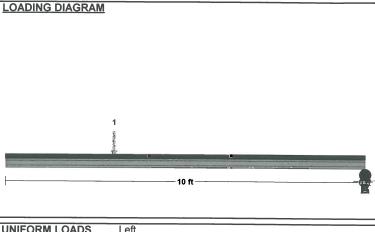
Created by combining all dead loads and live loads on span(s) 1

-402 lb

Controlling Shear:

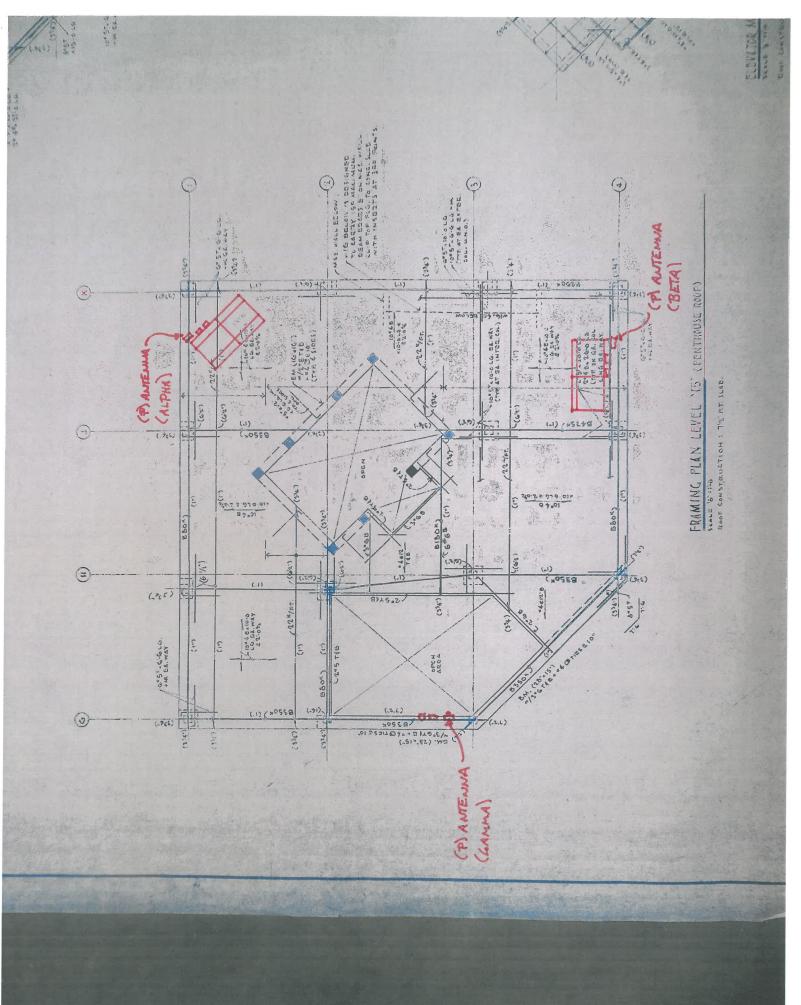
NOTES

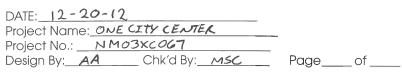
At right support of span 1 (Left Span)


Created by combining all dead loads and live loads on span(s

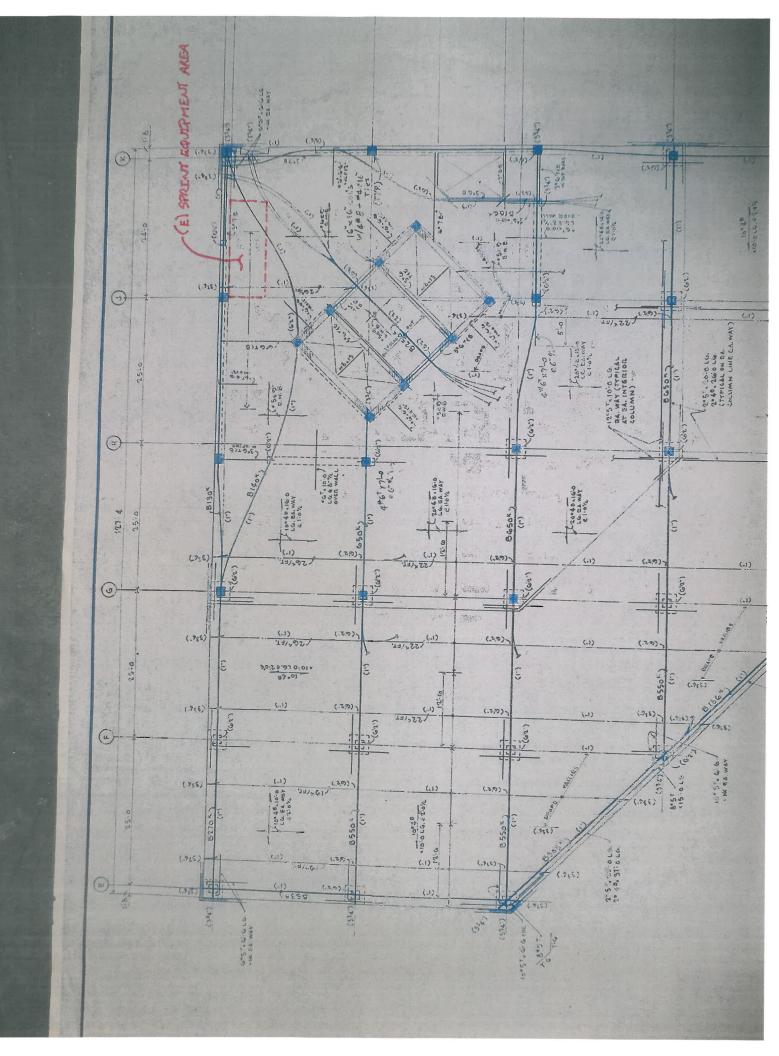
Comparisons with required sections: Reg'd Provided Moment of Inertia (deflection): 0 in4 2.85 in4 Moment: -2663 ft-lb 3825 ft-lb Shear: -402 lb 13078 lb

Andres Agudelo Hudson Design Group LLC 1600 Osgood Street, Suite 3090, Bldg. 20N


North Andover, MA 01845


StruCalc Version 8.0.112.0 12/20/2012 10:06:40 AM

UNIFORM LOADS		Left
Uniform Live Load	0	plf
Uniform Dead Load	0	plf
Beam Self Weight	8	plf
Total Uniform Load	8	plf


POINT LOA	<u>DS - LEFT S</u>	<u>PAN</u>		_	
Load Number	er <u>One</u>				
Live Load	326.1 lb				
Dead Load	0 lb				
Location	3 ft				

· CHECK ROOF REINFORCED CONCRETE SLAB:
- SLAB DESCRIPTION: (PER ATTACHED BUILDING PLANS)
- THICKNES: 7 1/2" - STEEL BARS: #4 @ 2'-0" O.C; EACH WAY - f'c = 4000 PSI - fy = 60,00 PSI - LENGTH = 16 FT (WORSE CASE)
$\rho = \frac{As}{bd} = \frac{0.2 \text{ Im}^2}{(12^n)(7.5^n)} = 0.0022$
Mu - 129.4 PSI - FROM TABLES.
$M_{LL} = (129.4 \text{ PSI})(0.9)(12")(7.5")^2 = 78,610.5 \text{ IN-Lbs}$
Mu = Wul? = 6.55 FT-K
$w_{11} = \frac{8 M_{11}}{l^2} = \frac{(8)(6.55 \text{FT} - \text{K})}{(16 \text{FT})^2} = 204.68 \text{Lb/FT}$
Wu = 204.68 Lb/FT = 204.68 Psf
- DEAD LOADS:
· WEILHT OF SLAB: 7 1/2"/12 x 150 PCF = 93.75 PSF
· MISCELLANEOUS = 10 PSF
- LIVE WAD - SNOW = 31.5 PSF
* NET LOAD = 93.75 Psf + 10 Psf + 17.23 Psf + 31.5 Psf = 152.48 Psf < 204.68 Psf .: O.K!

DATE: 12-20-12
Project Name: ONE CITY CENTER
Project No.: NM 03 xCO67
Design By: AA Chk'd By: MSC

Page____ of ____

· DEAT	D LOADS	
-	WEIGHT OF SLAB: 71/2"/12 x 150	Pcf = 93.75 Psf
	development production and control count of count of the country o	
-	MISCELLANEOUS: 10 PSF	
	PROPOSED EQUIPMENT:	WEIGHT (Lbs.)
	hall before the control of the commence of the control of the cont	
	(1) ALCATEL-LUCENT 9928 CABINET	= 1390
	(1) GOECUL BATTERY BACK-UP CABIN	= 1830 = 100
	(1) TRANSFORMER	= 300
		SECTION OF THE CONTROL OF THE CONTRO
		= 4620
· ARE	A LOAD - 4620 Lbs. 481	3 75F
· ARE	A LOAD - 4620 Lbs. 48.17	3 Psf
	96 FT2	
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25	
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)
	96 FT2 LOAD = 93.75 PSF + 10 PSF + 25 (SEI	5 PSF + 48.13 PSF RVICE)

Reference Documents

GOGES OF SLAB U.N.O.) CTYPICAL AT ALL 2 48, 26.016.

Crypical at Ed.

12"5Tx 6.6 LG.+HK

(3 p

. C 5 . 70-0 LG.

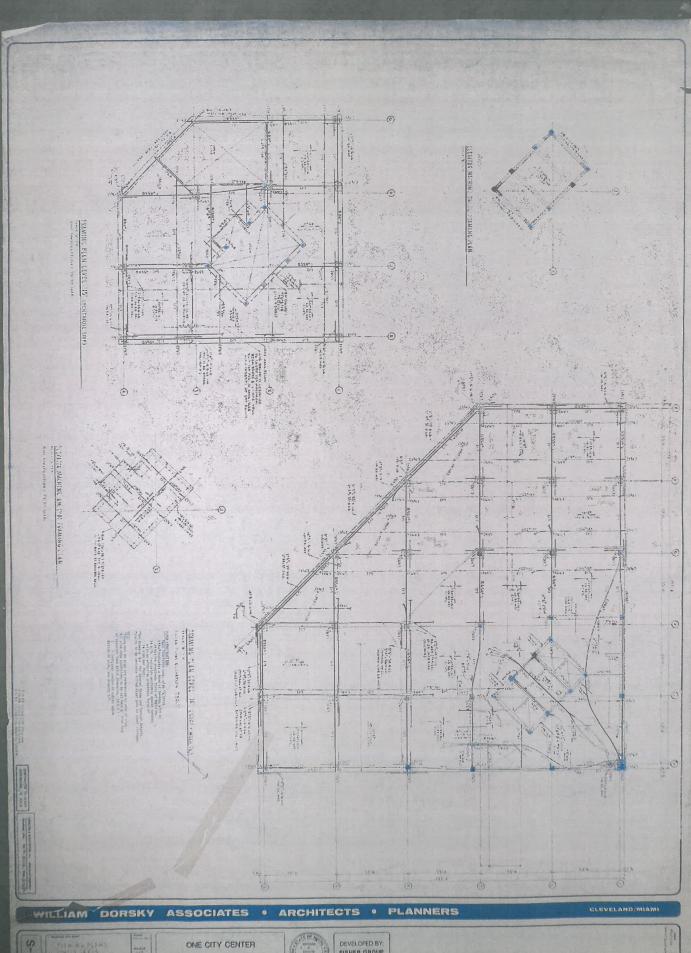
EXTERIOR COL. U.N.O.)

FRAMING PLAN LEVEL 14" CROOF + MECH. FL.)

SCALE 18":1:0

FINISH FLOOR ELEVATION 206.7

FLOOR CONSTRUCTION:


14 k/ft. indicates uniformly spaced tendons B356* indicates a band of tendons with an with an effective prestress force of effective prestress force of 350kips. Post Tensioned conc. slab 7'n, thick. 14 kips per foot.

*See drawing \$.1 for General Notes and Typical Details. *Stairs to be concrete filled steel pans on steel stringer.

Dimensions on plan are referenced to edge of slab. All slab edge conditions to be set back &" from face of exterior face brick dimension. (U.N.O.)

) indicates center of cables above bottom of slab, see drawing S-1.

16") 4/2"8 TEB 0" TYP, 4 SIDES, RS AT CODMER COLS,

MAINE PORTLAND.

DEVELOPED BY: PISHER GROUP TROY, HEW YORK