STRUCTURAL ANALYSIS REPORT

For

ME5040 (LTE 5C)

MUNJOY HILL

211 Cumberland Avenue Portland, ME 04101

Antennas Mounted on Building Façade and on Ballast Frames; Equipment Room in Basement

Prepared for:

Dated: February 12, 2016

Prepared by:

1600 Osgood Street Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553

www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the structure that will support the existing AT&T equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's proposed equipment.

This office conducted an on-site visual survey of the above areas on January 27, 2016. Attendees included Manuel Tejada (HDG – Field Technician).

CONCLUSION SUMMARY:

Building plans prepared by Leasure, Tuttle, Lee dated 03/23/1967 were obtained for our use. A limited visual survey of the structure was completed in or near the areas of the proposed work.

Based on our evaluation, we have determined that the existing structure **IS CAPABLE** of supporting the proposed equipment loading with the following modifications:

 Add ballast to the existing Alpha and Beta sector frames. See the chart below for ballast requirements.

MINIMUM BALLAST REQUIREMENTS				
SIDE	A (Back)	B (Front)		
NUMBER OF BLOCKS	34	20		
SIZE OF BLOCKS	4"x8"X16" Solid			
WEIGHT OF BLOCKS	38 lbs./ ea.			
TOTAL BALLAST WEIGHT	2052 lbs.			

HDG did not perform a condition assessment of the structure. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.

APPURTENANCE/EQUIPMENT CONFIGURATION:

- (3) QS66512-3 Antennas (72"x12"x9.6" Wt. = 48 lbs. /ea.) (One per sector)
- (6) RRH (RRUS-32) (26.7"x12.1"x6.7") (Wt. = 77 lbs. /each) (Two per sector)
- (6) Triplexers (5.83"x9.65"x2.05" Wt. = 7.5 lbs. /ea.) (Two per sector)
- (3) 7750 Antennas (57"x11"x5" Wt. = 35 lbs. /ea.) (One per Sector)
- (2) HPA-65R-BUU-H6 Antennas (72"x14.8"x9" Wt. = 56 lbs. /ea.) (Alpha & Gamma sector)
- (1) SBNH-1D6565C Antenna (96.4"x11.9"x7.1" Wt. = 61 lbs.) (Beta sector)
- (2) AM-X-CD-16-65-00T-RET Antennas (72"x11.8"x5.9" Wt. = 48.5 lbs. /ea.) (Alpha & Gamma sector)
- (1) AM-X-CD-14-65-00T-RET Antenna (48"x11.8"x5.9" Wt. = 36.5 lbs.) (Beta sector)
- (3) A2 Module (16.4"x15.2"x3.4" Wt. = 22 lbs. /ea.) (One per sector)
- (9) RRH (RRUS-11) (19.69"x16.97"x7.17" Wt. = 50.7 lbs. /ea.) (Three per sector)
- (3) Surge Arrestors (Wt. = 32.8 lbs. /ea.) (One per sector)
- (3) 9E Surge Arrestors (Wt. = 43.5 lbs. /ea.) (One per sector)
- (6) Powerwave LGP21401 TMAs (14.4"x9.0"x2.7" Wt. = 19 lbs. /ea.) (Two per sector)

*Proposed loading shown in bold.

DESIGN CRITERIA:

1. International Building Code (IBC) 2009, and ASCE 7-05 (Minimum Design Loads for Buildings and Other Structures).

Wind Analysis:

Reference Wind Speed:	100 mph	(FIG 6-1C; ASCE 7-05)
Category:	В	(Section 6.5.6.3; ASCE 7-05)

Roof:

Flat Roof Snow Load:	42 psf	(P ₁ =0.7*Ce*Ct*l*P _g)
Thermal Factor, Ct:	1.0	(Typical Structure)
Exposure Factor, Ce:	1.0	(Exp. B- Partially Exposed)
Importance Factor, I:	1.0	(Category II)
Ground Snow, P_g :	60 psf	(FIG 7-1; ASCE 7-05)

2. EIA/TIA -222- G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town: Portland
County: Cumberland
Wind Load: 100 mph
Nominal Ice Thickness: 1 inch

3. Approximate height above grade to the center of the Antennas:

160'-0"+/- (Alpha & Beta) 155'-0"+/- (Gamma)

ANTENNA SUPPORT RECOMMENDATIONS:

- The new Alpha and Beta sector antennas are proposed to be mounted on existing pipe masts secured to the existing non-penetrating ballast frames located on the roof.
- The new Gamma sector antennas are proposed to be mounted on the existing pipe mast secured to the existing building façade with epoxy anchors.

RRH SUPPORT RECOMMENDATIONS:

The new RRH's are proposed to be mounted on the existing non-penetrating ballast frames located on the roof.

Limitations and assumptions:

- Reference the latest HDG construction drawings for all the equipment locations details.
- 2. Mount all equipment per manufacturer's specifications.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
- 5. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 6. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.
- 7. A condition assessment of the existing structure was not part of the scope of work.

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing Alpha sector antennas.

Photo 2: Sample photo illustrating the existing Beta sector antennas.

Photo 3: Sample photo illustrating the existing Gamma sector antennas.

Photo 4: Sample photo illustrating the existing Gamma sector RRH's.

Alpha & Beta Sector Antenna Calculations

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Checked By: MSC

ALPHA SECTOR ANTENNAS

2.6.5.2 Velocity Pressure Coeff:

$$K_z = 2.01 (z/z_g)^{2/\alpha}$$
 $z = 160 (ft)$
 $z_g = 1200 (ft)$
 $K_z = 1.130$ $\alpha = 7$

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t/K_h)]^2$$
 $K_h = e^{(f*z/H)}$

7

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

h= 154

Gh= 0.554

2.6.7.2 Guyed Masts

Gh= 0.85

2.6.7.3 Pole Structures

Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35

Gh=

1.35

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.8 Design Ice Thickness:

$$\begin{aligned} t_{iz} &= 2.0^* t_i^* I^* K_{iz}^* (K_{zt})^{0.35} & t_i^* & 1 \\ & I & I & 1 \\ & t_{iz}^* & 2.34 & K_{iz}^* & 1.17 \\ & & K_{zt}^* & 1 \end{aligned}$$

$$K_{iz} = [z/33]^{0.10} \le 1.4$$

$$K_{iz} = 1.17$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$
 Dc= 72 (in) Largest Dim of Member

$$A_{iz} = 546.98$$

2.6.9 Design Wind Load:

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$
 $K_z = 1.130$ $K_{zt} = 1$ $q_z = 27.49$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I*K_{zt}*K_z)^{0.5}*V*D$$

Dp = Outside Diameter or Out to Out:

0.2 **feet**

C= 21.26

Cf= 1.2

<u>Appurtenances</u>	<u>Height</u>	Width	<u>Depth</u>	Flat Area	Force Per Appurtenance
(E) Antenna	57	11	5	4.35	193.89 (lbs)
(E) Antenna	72	14.8	9	7.40	329.53 (lbs)
(E) Antenna	72	11.8	5.9	5.90	262.73 (lbs)
(P) Antenna	72	12	9.6	6.00	267.18 (lbs)

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$$K_z = 2.01 (z/z_g)^{2/\alpha}$$

z= 160 (ft)

1200 (ft)

BETA SECTOR ANTENNAS

α= 7

 $z_g =$

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t/K_{h)}]^2$$

$$K_h = e^{(f*z/H)}$$

$$K_{zt} = \#DIV/0!$$

 $K_h = \#DIV/0!$

 $K_e = 0$ (from Table 2-4)

(If Category 1 then $K_{zt} = 1.0$) $K_t = 0$ (from Table 2-5)

f= 0 (from Table 2-5)

Category= 1 z= 160

H= 0 (Ht. of the crest above surrounding terrain)

 $K_{zt} = 1.00$

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

h= 154 Gh= 0.554

2.6.7.2 Guyed Masts

Gh= 0.85

2.6.7.3 Pole Structures

Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35

Gh=

1.35

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.8 Design Ice Thickness:

$$\begin{aligned} t_{iz} &= 2.0 * t_i * I * K_{iz} * (K_{zt})^{0.35} & t_i &= & 1 \\ & & & I &= & 1 \\ & & t_{iz} = & 2.34 & K_{iz} = & 1.17 \\ & & & K_{zt} = & 1 \end{aligned}$$

$$K_{iz} = [z/33]^{0.10} \le 1.4$$

$$K_{iz} = 1.17$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$
 Dc= 96.4 (in) Largest Dim of Member

$$A_{iz} = 726.51$$

2.6.9 Design Wind Load:

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$
 $K_z = 1.130$ $K_{zt} = 1$ $q_z = 27.49$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I*K_{zt}*K_z)^{0.5}*V*D$$

Dp = Outside Diameter or Out to Out:

0.2 feet

C= 21.26

Cf= 1.2

Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
(E) Antenna	57	11	5	4.35	193.89 (lbs)
(E) Antenna	96.4	11.9	7.1	7.97	354.75 (lbs)
(E) Antenna	48	11.8	5.9	3.93	175.15 (lbs)
(P) Antenna	72	12	9.6	6.00	267.18 (lbs)

Project Name: AWE-MUNJOY HILL

Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$$K_z = 2.01 (z/z_g)^{2/\alpha}$$

z= 157 (ft)

1200 (ft)

7

ALPHA & BETA SECTOR RRH

$$K_z = 1.124$$

 $Z_g =$

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α K _{zmin}		K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t/K_h)]^2$$

$$K_h = e^{(f*z/H)}$$

$$K_{zt} = \#DIV/0!$$

 $K_h = \#DIV/0!$

K_e=

0 (from Table 2-4)

(If Category 1 then K zt =1.0)

 $K_t =$

0 (from Table 2-5)

f=

0 (from Table 2-5)

Category= 1

z= 157

H=

0 (Ht. of the crest above surrounding terrain)

 $K_{zt} =$

1.00

Project Name: AWE-MUNJOY HILL

Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0] h= ht. of structure

h= 154 Gh= 0.554

<u>2.6.7.2 Guyed Masts</u> Gh= 0.85

2.6.7.3 Pole Structures Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35 Gh= 1.35

Project Name: AWE-MUNJOY HILL

Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.8 Design Ice Thickness:

$$K_{iz} = [z/33]^{0.10} \le 1.4$$

$$K_{iz} = 1.17$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$
 Dc= 26.7 (in) Largest Dim of Member

$$A_{iz} = 213.25$$

2.6.9 Design Wind Load:

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2 K_z = 1.124$$

$$K_{zt} = 1$$

$$q_z = 27.34 K_d = 0.95$$

$$V_{max} = 100$$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Project Name: AWE-MUNJOY HILL

Project Number: ME5040

Designed By: AA Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I*K_{zt}*K_z)^{0.5}*V*D$$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.21 Cf= 1.2

Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
RRH-11	19.7	17	7.2	2.33	103.01 (lbs)
RRH-32	26.7	12.1	6.7	2.24	99.37 (lbs)
FIBER BOX	20	20	10	2.78	123.03 (lbs)
SURGE ARRESTOR	11.5	10.4	6.3	0.83	36.79 (lbs)

Site Name: **MUNJOY HILL**

Site No.

ME5040

Done by:

AA

Checked by: MSC

Date:

2/12/2016

Calculate Total Ballast Required for Ballast Mount

WIND FORCES

F antennas =

at 7.5 ft.

194 lbs.

at 7 ft.

860 lbs.

F RRH/SURGE/FIBER BOX

363 lbs.

Antenna Height =

7.5 ft

7 ft

RRH/Surge/Fiber Box=

Overturning at Ballast

3 ft

Length =

7.25 ft

Fc

SF =

Fc

1.2

Moment =

10276.8 lbs.-ft

Hold Down Force =

1417.49 lbs.

Per Side

Wa Ballast

Equipment

Frame =

150 lbs.

Total Ballast Required Wa=

1267.49 lbs.

Blocks Required Wa =

34 Assumed 38lbs Block (4"x8"x16" Solid)

Wb Ballast

Equipment

Frame 300 lbs. -4 Antennas 190 lbs. RRH's 130 lbs. Surge Arrestor/Box 75 lbs.

Total =

695 lbs.

Total Ballast Required Wb =

722.49 lbs.

Blocks Required Wb=

20 Assumed 38lbs Block (4"x8"x16" Solid)

Footprint Area under Ballast Frame=

58.34 sq. ft.

<u>Distributed Load under Ballast Frame=</u>

50.13 psf

Gamma Sector
Antenna Calculations

Project Name: MUNJOY HILL **Project Number:** ME5040

Designed By: AA

Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$$K_z$$
= 2.01 $(z/z_g)^{2/\alpha}$

z= 155 (ft)

1200 (ft)

7

GAMMA SECTOR ANTENNAS

 $Z_g =$

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t/K_h)]^2$$

$$K_h = e^{(f*z/H)}$$

$$K_{zt} = \#DIV/0!$$

 $K_h = \#DIV/0!$

K_e=

0 (from Table 2-4)

(If Category 1 then K zt =1.0)

 $K_t = 0$ (from Table 2-5)

f=

0 (from Table 2-5)

Category= 1

z= 155

H= 0 (Ht. of the crest above surrounding terrain)

 $K_{zt} = 1.00$

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0] h= ht. of structure

h= 154 Gh= 0.554

2.6.7.2 Guyed Masts Gh= 0.85

<u>2.6.7.3 Pole Structures</u> Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35 Gh= 1.35

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.8 Design Ice Thickness:

$$K_{iz} = [z/33]^{0.10} \le 1.4$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$
 Dc= 72 (in) Largest Dim of Member

$$A_{iz} = 545.20$$

2.6.9 Design Wind Load:

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$
 $K_z = 1.120$ $K_{zt} = 1$ $q_z = 27.24$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I*K_{zt}*K_z)^{0.5}*V*D$$

Dp = Outside Diameter or Out to Out:

0.2 feet

C= 21.17

Cf= 1.2

Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
(E) Antenna	57	11	5	4.35	192.14 (lbs)
(E) Antenna	72	14.8	9	7.40	326.55 (lbs)
(E) Antenna	72	11.8	5.9	5.90	260.36 (lbs)
(P) Antenna	72	12	9.6	6.00	264.77 (lbs)

ICE WEIGHT CALCULATIONS

Project: ME5040

Thickness of ice: 1

Weight of ice based on total radial SF area: Antenna

 Depth (in):
 9.6

 height (in):
 72

 Width (in):
 12

Total weight of ice on object: 101 pounds ice

Weight of object: 48 pounds

Combined weight of ice and object: 149 pounds

Per foot weight of ice: Pipe

pipe weight per foot: 3.65 pipe length (ft): 6 diameter (in): 2.375

Per foot weight of ice on object: 3 pounds ice /ft

Total weight of ice on object: 17 pounds
Total weight of pipe: 21.9 pounds
Combined weight of pipe and ice: 39 pounds

^{*} Density of ice used = 56 PCF

The state of the s		
Total Weight:	188	pounds

Site Name: MUNJOY HILL

Site No.

ME5040

Done by:

AA

Checked by: MSC

Date:

2/12/2016

CHECK CONNECTION CAPACITY

Reference: Hilti Volume 2: Anchor Fastening Technical Guide

Epoxy Type =

HIT-HY20

Anchor Diameter =

3/8 in.

(Assumed)

Min. Embedment Depth =

2 in.

(Assumed)

Allowable Tensile Load =

F_{Tall} =

525 lbs.

Allowable Shear Load =

 $F_{Vall} =$

790 lbs.

WIND FORCES

Reaction

F =

265 lbs.

GRAVITY LOADS

Ice and Equipment

188 lbs.

No. of Supports =

2

No. of Anchors / Support =

2

Tension Design Load / Anchor =

f,=

66.25 lbs.

525 lbs.

Therefore, OK!

Shear Design Load / Anchor=

f_v=

47.00 lbs.

<

<

790 lbs. Therefore, OK!

CHECK COMBINED TENSION AND SHEAR

 f_t / F_T

 f_v/F_v

≤

1.0

0.126

0.059

= 0.186

<

1.0 Therefore, OK!

RRH Frame Calculations

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$$K_z = 2.01 (z/z_g)^{2/\alpha}$$

157 (ft) Z=

RRH

1200 (ft) 7

$$K_z = 1.124$$

α=

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t/K_{h)}]^2$$

$$K_h = e^{(f*z/H)}$$

$$K_{zt} = \#DIV/0!$$

 $K_h = \#DIV/0!$

 $K_e =$

0 (from Table 2-4)

(If Category 1 then K zt =1.0)

 $K_t =$

0 (from Table 2-5)

f=

0 (from Table 2-5)

Category=

z= 157

H=

0 (Ht. of the crest above surrounding terrain)

 $K_{zt} =$ 1.00

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA

Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

h= 154

Gh= 0.554

2.6.7.2 Guyed Masts

Gh= 0.85

2.6.7.3 Pole Structures

Gh= 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35

Gh=

1.35

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Checked By: MSC

2.6.8 Design Ice Thickness:

 $K_{iz} = [z/33]^{0.10} \le 1.4$

$$K_{iz} = 1.17$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$$
 Dc= 26.7 (in) Largest Dim of Member

$$A_{iz} = 213.25$$

2.6.9 Design Wind Load:

$$q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$$
 $K_z = 1.124$ $K_{zt} = 1$ $q_z = 27.34$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd		
Latticed structures with triangular,			
square or rectangular cross sections	0.85		
Tubular pole structures, latticed			
structures with other cross sections,	0.95		
appurtenances.			

Project Name: MUNJOY HILL Project Number: ME5040

Designed By: AA Ch

Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

$$C = (I*K_{zt}*K_z)^{0.5}*V*D$$

Dp = Outside Diameter or Out to Out:

0.2 **feet**

C= 21.21

Cf= 1.2

Appurtenances	Height	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
RRH-11	19.7	17	7.2	2.33	103.01 (lbs)
RRH-32	26.7	12.1	6.7	2.24	99.37 (lbs)
Squid	24	9.7	9.7	1.62	71.60 (lbs)

Site Name:

MUNJOY HILL

Site No.:

ME5040

Done by:

AA

Checked by: MSC

Date:

2/12/2016

Calculate Total Ballast Required for Ballast Mount

Assume (2) RRH's as projected area

<u>Force (F) =</u> 207 lbs.

Height (H) = 3 ft

<u>Weight (W) =</u> 380 lbs.

Frame Width/2 (X) = 1.5 ft

<u>Length (L) =</u> 2.2 ft

Ballast (Wb) = TBD

Design Group

Overturning at Ballast

$$\Sigma M = 0 = (F * H) - (W * X) - (Wb * L) --->$$

$$Wb = [(F*H-W*X)/L]*SF =$$

23 lbs.

Determine Number of Blocks Required

(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required =

1 BLOCKS PER SIDE

-Total Weight of Fully Loaded Frame =

532 lbs.

-Footprint Area Under Ballast Frame =

10.5 sqft.

-Distributed Load Under Ballast Frame =

51 psf

Roof Calculations

Date: 02-12-2016_

Project Name: MUNJOY HILL

Project Number: ME5040

Designed By: AA Checked By: MSC

Check Roof Capacity:

Reference: • Building Plans by Leasure, Tuttle, Lee dated 03/23/1967.

Roof Design LL: 100 psf
Calculated Flat Roof Snow: 42 psf
Miscellaneous: 5 psf

Net Available Load: 53 psf

Antenna Ballast Frame Load: 50.13 psf < 53 PSF O.K!

Antenna Ballast Frame Load: 51 psf < 53 PSF O.K!

GENERAL NOTES

FLOOR DESIGN LL = 50%/FT* + PARTION DL - 20 %/FT*

& ALLOWABLE SOIL PRESSURE - 2000 PEF

S CONCRETE TO BE 3000 PS: W/ GRADE SO REINFORGING.

A MASONRY WALLS TO HAVE DUR-O-WALL HEINFORGING

S. STEEL TO BE ASK ENGEPT THRE TO BE ASOD GRADE
B- 94 KSI. DETAIL, FABRICATED, AND ERECT PER
AUSC STANDARDS AND SPECIFICATIONS.
S.JOINT TO BE DETAIL FABRICATED AND ERECTED DER
S.JJ. STANDARDS AND SPECIFICATIONS.

FLOOR DECK TO BE "IN X 28 GA, TYPE B GALVANIZED.

BALL LINTELS & BEAMS TO BEAR & MIN ON TO WALLS.

9. # INDICATES JOIST W/ BULTED CONNECTIONS.

Tros of INDICATES BOTTOM OF FOOTING ELEV.

