(Revised) STRUCTURAL ANALYSIS REPORT

For

ME 5040 (LTE 4C)

AWE-MUNJOY HILL 211 Cumberland Avenue Portland, ME 04101

Antennas Mounted on Building Façade and on Ballast Frames; Equipment Room in Basement

Prepared for:

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the structure that will support the existing AT&T equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations' pertaining to the support of AT&T's proposed equipment.

An on-site visual survey of the above areas was performed by ProVertic on December 5, 2014. Attendees included Nick Bestor and Mark Gormley (ProVertic Field Technicians).

CONCLUSION SUMMARY:

Building plans prepared by Leasure, Tuttle, Lee dated 03/23/1967 were obtained for our use. A limited visual survey of the structure was completed in or near the areas of the proposed work.

Based on our evaluation, we have determined that the existing structure **<u>IS CAPABLE</u>** of supporting the proposed equipment loading <u>with the following modifications:</u>

Add ballast to the existing Alpha and Beta sector frames. See the chart below for ballast requirements.

MINIMUM BALLAST REQUIREMENTS			
SIDE	A (Back)	B (Front)	
NUMBER OF BLOCKS	32	19	
SIZE OF BLOCKS	4"x8"X16" Solid		
WEIGHT OF BLOCKS	38 lbs./ ea.		
TOTAL BALLAST WEIGHT	1938 lbs.		

• <u>Relocate the Alpha sector antenna frame at least 4 feet away from the parapets</u> to meet the roof design loads provided in the building plans.

APPURTENACE/EQUIPMENT CONFIGURATION:

(2) HPA-65R-BUU-H6 Antennas (72"x14.8"x9" - Wt. = 56 lbs. /ea.) (Beta & Gamma sector)

(1) SBNH-1D6565C Antenna (96.4"x11.9"x7.1" – Wt. = 61 lbs.) (Alpha sector)

(3) A2 Module (16.4"x15.2"x3.4" – Wt. = 22 lbs. /ea.) (One per sector)

(6) RRH (RRUS-11) (19.69"x16.97"x7.17" – Wt. = 50.7 lbs. /ea.) (Two per sector)

(3) Surge Arrestors (Wt. = 32.8 lbs. /ea.) (One per sector)

(1) Power Plant (Wt. = 1900 lbs.)

(1) Battery Rack (Wt. = 2500 lbs.)

(6) 7750 Antennas (57"x11"x5" Wt. = 35 lbs. /ea.) (Two per Sector)

(2) AM-X-CD-16-65-00T-RET Antennas (72"x11.8"x5.9" Wt. = 48.5 lbs. /ea.) (Beta & Gamma sector)

(1) AM-X-CD-14-65-00T-RET Antenna (48"x11.8"x5.9" Wt. = 36.5 lbs.) (Alpha sector)

(3) 9E Surge Arrestors (Wt. = 43.5 lbs. /ea.) (One per sector)

(6) RRH (RRUS-11) (19.69"x16.97"x7.17" – Wt. = 50.7 lbs. /ea.) (Two per sector)

Referenced documents are attached.

DESIGN CRITERIA:

1. International Building Code (IBC) 2009, and ASCE 7-05 (Minimum Design Loads for Buildings and Other Structures).

Wind Analysis:

Reference Wind Speed:	100 mph	(FIG 6-1C; ASCE 7-05)
Category:	В	(Section 6.5.6.3; ASCE 7-05)

Roof:

Ground Snow, Pg:	60 psf	(FIG 7-1; ASCE 7-05)
Importance Factor, I	1.0	(Category II)
Exposure Factor, Ce:	1.0	(Exp. B- Partially Exposed)
Thermal Factor, Ct:	1.0	(Typical Structure)
Flat Roof Snow Load:	42 psf	(Pf=0.7*Ce*Ct*I*Pg)

2. EIA/TIA -222- G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town:	Portland
County:	Cumberland
Wind Load:	100 mph
Nominal Ice Thickness:	1 inch

3. Approximate height above grade to the center of the Antennas:

161'-6"+/- (Alpha & Beta) 155'-0"+/- (Gamma)

ANTENNA SUPPORT RECOMMENDATIONS:

- The new Alpha and Beta sector antennas are proposed to be mounted on new and existing pipe masts secured to the existing non-penetrating ballast frames located on the roof.
- The new Gamma sector antennas are proposed to be mounted on new and existing pipe masts secured to the existing building façade with epoxy anchors.

RRH SUPPORT RECOMMENDATIONS:

The new RRH's are proposed to be mounted on new non-penetrating ballast frames located on the roof. Install the new RRH frames at least 4 feet away from the parapets. See the chart below for ballast requirements.

MINIMUM BALLAST REQUIREMENTS		
NUMBER OF	2	
BLOCKS PER SIDE	L	
TOTAL NUMBER OF	4	
BLÓCKS		
SIZE OF BLOCKS	4"x8"X16" Solid	
WEIGHT OF BLOCKS	38 lbs./ ea.	
TOTAL BALLAST WEIGHT	152 lbs.	

EQUIPMENT SUPPORT RECOMMENDATIONS:

The new power plant and battery rack are proposed to be installed inside the AT&T equipment room located in the basement.

Limitations and assumptions:

- 1. Reference the latest HDG construction drawings for all the equipment locations details.
- 2. Mount all equipment per manufacturer's specifications.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
- 5. HDG is under the assumption that the ballast frames are located over structurally adequate roof supports (i.e. beams, columns, or bearing walls). HDG was not able to verify the roof structure and its components at the time of our visit.
- 6. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 7. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing Alpha sector antennas.

Photo 2: Sample photo illustrating the existing Beta sector antennas.

Photo 3: Sample photo illustrating the existing Gamma sector antennas.

Photo 4: Sample photo illustrating the existing Gamma sector RRH's.

Alpha and Beta Sector Antenna Calculations

ALPHA SECTOR ANTENNAS

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/2}$	/α	Z=	161.5 (ft)
		z _g =	1200 (ft)
K _z =	1.133	α=	7

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

$$K_h = e^{(f^*z/H)}$$

 $K_{zt} = \#DIV/0!$

(If Category 1 then K_{2t} =1.0)

Category= 1

K _h =	#DIV/0!	
K _e =	0	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0	(from Table 2-5)
z=	161.5	
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

 Gh = 0.85 + 0.15 [h/150 - 3.0]
 h= ht. of structure

 h=
 161.5
 Gh=
 0.5615

 2.6.7.2 Guyed Masts
 Gh=
 0.85

 2.6.7.3 Pole Structures
 Gh=
 1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= 1.35

2.6.8 Design Ice Thickness:

$t_{iz} = 2.0*t_i*I*K_{iz}*(K_{zt})^{0.35}$		t _i =	1	
			1=	1
	t _{iz} =	2.34	K _{iz} =	1.17
			K _{zt} =	1

 $K_{iz} = [z/33]^{0.10} \le 1.4$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$	Dc=	72 (in) Largest Dim of Member

2.6.9 Design Wind Load:

q_z=

A_{iz} =

F= qz*Gh*(EPA's) q_z= 0.00256*K_z*K_{zt}*K_d*V_{max}²

27.56

547.51

K _z =	1.133
K _{zt} =	1
K _d =	0.95
V _{max} =	100

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.29

Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
(E) Antenna	96.4	11.9	7.1	7.97	355.69 (lbs)
(E) Antenna	57	11	5	4.35	194.41 (lbs)
(E) Antenna	57	11	5	4.35	194.41 (lbs)
(P) Antenna	48	11.8	5.9	3.93	175.62 (lbs)
Item No.5	0	0	0	0.00	0.00 (lbs)

Cf= 1.2

TOTAL FORCE (ΣF_A) =

920.14 (lbs)

2.6.5.2 Velocity Pressure Coeff:

K_z = 2.01 (z/z _g) ^{2/α}		z=	161.5 (ft)	 BETA SECTOR ANTENNAS
		z _g =	1200 (ft)	
K _z =	1.133	α=	7	

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	Kt	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

$$K_h = e^{(f^*z/H)}$$

K_{zt}= #DIV/0!

(If Category 1 then K_{2t} = 1.0)

Category= 1

K _h =	#DIV/0!	
K _e =	0	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0	(from Table 2-5)
z=	161.5	
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures								
Gh = 1.0 Latticed Structures > 600 ft								
Gh = 0.85 Latticed Structures 450 ft or less								
Gh = 0.85 + 0.15 [h/150 - 3.0] h= ht. of structure								
h= 161.5		Gh=	0.5615					
2.6.7.2 Guyed Masts	the second	Gh=	0.85					
2.6.7.3 Pole Structures		Gh=	1.1					

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= 1.35

2.6.8 Design Ice Thickness:

t _{iz} = 2.0	D*t _i *I*K _{iz} *	$(K_{zt})^{0.35}$	t _i =	1
			=	1
	t _{iz} =	2.34	K _{iz} =	1.17
			K _{zt} =	1

 $K_{iz} = \left[z/33 \right]^{0.10} \leq 1.4$

K_{iz}= 1.17

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

$A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$	Dc=	72 (in) Largest Dim of Member

2.6.9 Design Wind Load:

A_{iz} =

547.51

F= qz*Gh*(EPA's) $q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$ $K_z = 1.133$ $K_{zt} = 1$ $q_z = 27.56$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.29

Cf= 1.2

Appurtenances	Height	Width	<u>Depth</u>	Flat Area	Force Per Appurtenance
(E) Antenna	57	11	5	4.35	194.41 (lbs)
(E) Antenna	57	11	5	4.35	194.41 (lbs)
(E) Antenna	72	11.8	5.9	5.90	263.43 (lbs)
(P) Antenna	72	14.8	9	7.40	330.41 (lbs)
ltem No.5	0	0	0	0.00	0.00 (lbs)

TOTAL FORCE (ΣF_A) = 982.66 (lbs)

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$	Z=	157
	z _g =	1200
K _z = 1.124	α=	7

ALPHA & BETA SECTOR RRH

(ft)

(ft)

 $\text{Kzmin} \leq \text{Kz} \leq 2.01$

Table 2-4

Exposure	Zg	α K _{zmin}		K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

 $K_{zt} = [1 + (K_e K_t / K_h)]^2$

$$K_h = e^{(f^*z/H)}$$

K_{zt}= #DIV/0!

(If Category 1 then K_{zt} =1.0)

Category= 1

C

2.6.7.1 Self Supporting Lattice Structures

2.6.7 Gust Effect Factors

Gh = 1.0 Latticed Structures > 600 ft				
Gh = 0.85 Latticed Structures 450 ft o	or less			
Gh = 0.85 + 0.15 [h/150 - 3.0] h= ht. of structure				
h= 157	Gh=	0.557		
2.6.7.2 Guyed Masts	Gh=	0.85		
2.6.7.3 Pole Structures	Gh=	1.1		

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= 1.35

2.6.8 Design Ice Thickness:

$t_{iz} = 2.0*t_i*I*K_{iz}*(K_{zt})^{0.35}$		t _i =	1	
			ł=	1
	t _{iz} =	2.34	K _{iz} =	1.17
			K _{zt} =	1

 $K_{iz} = \left[z/33 \right]^{0.10} \le 1.4$

K_{iz}= 1.17

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

 $A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz}) \qquad Dc = 20.4 \text{ (in) Largest Dim of Member}$

2.6.9 Design Wind Load:

A_{iz} =

166.98

F= qz*Gh*(EPA's) $q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$ $K_z = 1.124$ $K_{zt} = 1$ $q_z = 27.34$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.21

Cf= 1.2

Appurtenances	<u>Height</u>	<u>Width</u>	Depth	Flat Area	Force Per Appurtenance
RRH-11	19.7	17	7.2	2.33	103.01 (lbs)
RRH-12	20.4	18.5	7.5	2.62	116.08 (lbs)
FIBER BOX	20	20	10	2.78	123.03 (lbs)
SURGE ARRESTOR	11.5	10.4	6.3	0.83	36.79 (lbs)
Item No.5	0	0	0	0.00	0.00 (lbs)

TOTAL FORCE (ΣF_A) = 378.90 (lbs)

Site Name:AWE-MUNJOY HILLSite No.ME5040Done by:AAChecked by: MSCDate:4/24/2015

Calculate Total Ballast Required for Ballast Mount

WIND FORCES

F antennas =	at 7.5 ft.	389 lbs.				
	at 7. ft.	594 lbs.				all
F RRH/SURGE/FIBER	BOX	380 lbs.			//	
Antenna Height =		75 ft		14/c		wb
Antenna Height -		7.5 ft			//	I.T.
			-	-		
RRH/Surge/Fiber Box	=	3 ft		Fc		Fc
			Le	ngth =	7.25 ft	
Overturning at Ballas	<u>t</u>		<u>SF</u>	=	1.2	
Momont -			£4			
woment =		9858.0 105.	-11			
Hold Down Force =		1359.81 lbs.	Pe	er Side	8	
1 						
Wa Ballast						
Equipment		150 16-				
Frame		150 lbs.				
Total Ballast Required	d Wa=	1209.81 lbs.				
Blocks Required Wa =	: E	32 Assu	imed 38lbs	Block (4"x8	"x16" Solid)	
Wb Ballast						
Fauinment						
Frame		300 lbs.				
-4 Antenna	as	175 lbs.				
RRH's		139 lbs.				
Surge A	rrestor	43.5 lbs.				
Total =		657.5 lbs.				
Total Ballast Required	<u>i Wb =</u>	702.31 lbs.				
	—					
Blocks Required Wb=		19 Assu	med 38lbs l	Block (4"x8'	"x16" Solid)	
Footprint Area under	Ballast Fram		58 34 69	ft		
i ootprint Area under			JO.J4 34.			
Distributed Load unde	er Ballast Fra	ime=	47.83 psf	F		

Gamma Sector Antenna Calculations

GAMMA SECTOR ANTENNAS

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$		z=	155 (ft)
		z _g =	1200 (ft)
K _z =	1.120	α=	7

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

 $K_h = e^{(f*z/H)}$

 $K_{zt} = \#DIV/0!$

(If Category 1 then K_{zt} =1.0)

Category= 1

K _h =	#DIV/0!	
K _e =	0	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0	(from Table 2-5)
z=	155	
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	

2.6.7 Gust Effect Factors

2.6.7.1	Self	Supporting	Lattice	Structures

- Gh = 1.0 Latticed Structures > 600 ft
- Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]	h= ht. of structure		
h= 155	Gh=	0.555	
<u>2.6.7.2 Guyed Masts</u>	Gh=	0.85	
2.6.7.3 Pole Structures	Gh=	1.1	

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh=

1.35

2.6.8 Design Ice Thickness:

K_{iz}=

1.17

t _{iz} = 2	$t_{iz} = 2.0*t_i*I*K_{iz}*(K_{zt})^{0.35}$		t _i =	1
			I=	1
	t _{iz} =	2.33	K _{iz} =	1.17
			K _{zt} =	1
K _{iz} =	$[z/33]^{0.10} \le 1$.4		

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

 $A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz})$ Dc = 48 (in) Largest Dim of Member $A_{iz} = 369.17$

2.6.9 Design Wind Load:

F= qz*Gh*(EPA's) $q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2$ $K_z = 1.120$ $K_{zt} = 1$ $q_z = 27.24$ $K_d = 0.95$ $V_{max} = 100$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.17

```
Appurtenances
                                       Width
                           Height
                                                   Depth
                                                            Flat Area
                                                                           Force Per Appurtenance
(E) Antenna
                             57
                                         11
                                                     5
                                                              4.35
                                                                                     192.14 (lbs)
(E) Antenna
                            57
                                                     5
                                         11
                                                              4.35
                                                                                     192.14 (lbs)
                                                    5.9
(E) Antenna
                            48
                                        11.8
                                                              3.93
                                                                                     173.57 (lbs)
(P) Antenna
                                        14.8
                                                     9
                                                              4.93
                             48
                                                                                    217.70 (lbs)
Item No.5
                             0
                                         0
                                                     0
                                                              0.00
                                                                                       0.00 (lbs)
```

Cf= 1.2

TOTAL FORCE (ΣF_A) = 775.56 (lbs)

ICE WEIGHT CALCULATIONS

Project: ME5040

Thickness of ice:

Weight of ice based on t	total radial SF area	: Antenna
Depth (in):	9	
height (in):	48	
Width (in):	14.9	
Total weight of ice on of	oject:	74 pounds ice
Weight of object:	34 po	unds
Combined weight of ice	and object:	108 pounds
Per foot weight of ice:		Pipe
Per foot weight of ice: pipe weight per foot:	3.65	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft):	3.65 5	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in):	3.65 5 2.375	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice or	3.65 5 2.375 n object:	Pipe 3 pounds ice /ft
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice on Total weight of ice on ob	3.65 5 2.375 n object: bject:	Pipe 3 pounds ice /ft 15 pounds
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice or Total weight of ice on ok Total weight of pipe:	3.65 5 2.375 n object: oject:	Pipe 3 pounds ice /ft 15 pounds 18.25 pounds

1

* Density of ice used = 56 PCF

Total Weight:

141 pounds

Site Name:AWE-MUNJOY HILLSite No.ME5040Done by:AAChecked by: MSCDate:4/24/2015

CHECK CONNECTION CAPACITY

Reference: Hilti Volum	ie 2: Anch	nor Fastening	Tech	nical Guide	e		
Epoxy Type = Anchor Diameter = Min. Embedment Deptl	h =	HIT-HY20 3/8 i 2 i	n. n.	(Assume (Assume	d) d)		
Allowable Tensile Load	=						
	F _{Tall} =	525	bs.				
Allowable Shear Load =		700 /	ha				
	r _{Vall} =	/901	DS.				
WIND FORCES							
Reaction	F =	220	bs.				
GRAVITY LOADS							
Ice and Equipment		141	bs.				P.
No. of Supports = No. of Anchors / Suppo	<u>rt =</u>	2 2					
Tension Design Load / A	nchor =						
	f _t =	55.00 l	bs.	<	525 lbs.	Therefore,	ОК !
Shear Design Load / And	:hor=						
	f _v =	35.25 l	bs.	<	790 lbs.	Therefore,	ОК !
CHECK COMBINED TEL	NSION A	ND SHEAR					
f _t / F _T +		f _v / F _v	≤	1.0			
0.105 +		0.045	=	0.149	< 1.0	Therefore,	ОК !

RRH Frame Calculations

2.6.5.2 Velocity Pressure Coeff:

$K_{z} = 2.01 (z/z_{g})^{2/\alpha}$	z=	157 (ft)	RRH FRAME
	z _g =	1200 (ft)	
K _z = 1.124	α=	7	

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

$$K_h = e^{(f^*z/H)}$$

K_{zt}= #DIV/0!

(If Category 1 then $K_{zt} = 1.0$)

Category= 1

K _h =	#DIV/0!	
K _e =	0	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0	(from Table 2-5)
z=	157	
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	

2.6.7 Gust Effect Factors

2.0.7.1 Self Supporting Lattice Structures	2.6.7.1	Self Sup	porting	Lattice	Structures
--	---------	----------	---------	---------	-------------------

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]	h= ht. of structure		
h= 157	Gh=	0.557	
2.6.7.2 Guyed Masts	Gh=	0.85	
2.6.7.3 Pole Structures	Gh=	1.1	

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= **1.85**

2.6.8 Design Ice Thickness:

$t_{iz} = 2.0*t_i*I*K_{iz}*(K_{zt})^{0.35}$		t _i =	1	
			=	1
	t _{iz} =	2.34	K _{iz} =	1.17
			K _{zt} =	1

 $K_{iz} = [z/33]^{0.10} \le 1.4$

K_{iz}= 1.17

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

 $A_{1z} = \pi^* t_{1z}^* (D_c + t_{1z})$ Dc= 20.4 (in) Largest Dim of Member $A_{1z} = 166.98$

2.6.9 Design Wind Load:

F= qz*Gh*(EPA's)

$q_z = 0.00256 K_z K_z K_z K_d V_{max}^2$		K _z =	1.124
		K _{zt} =	1
q _z =	27.34	K _d =	0.95
		V _{max} =	100

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out: 0.2 feet

C= 21.21

Cf= 1.2

<u>Appurtenances</u>	<u>Height</u>	<u>Width</u>	Depth	Flat Area	Force Per Appurtenance
RRH-11	19.7	17	7.2	2.33	103.01 (lbs)

Site Name: AWE-MUNJOY HILL Site No.: ME5040 Checked by: MSC Done by: AA Date: 4/24/2015

Calculate Total Ballast Required for Ballast Mount

Assume (2) RRH's as projected area

Force (F) =	207	lbs.
<u>Height (H) =</u>	3	ft
<u>Weight (W) =</u>	350	lbs.
Frame Width/2 (X) =	1.5	ft
<u>Length (L) =</u>	2.2	ft
Ballast (Wb) =	TBD	

Overturning at Ballast

 $\Sigma M = 0 = (F * H) - (W * X) - (Wb * L) ---> Wb = [(F*H-W*X)/L]*SF =$

44 lbs.

Determine Number of Blocks Required

(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required =	2 BLOCKS PER SIDE
-Total Weight of Fully Loaded Frame =	502 lbs.
-Footprint Area Under Ballast Frame =	10.5 sqft.
-Distributed Load Under Ballast Frame =	48 psf

Roof Calculations

Calculate Drift Snow:

Ground Snow Load, Pg	60 psf
Calculated Flat Roof Snow:	42 psf
Minumum Roof/Parapet Length, Lu	25 ft.
Snow Densty, Y	21.8 pcf
Height of Parapet, h	3.5 ft.
Balance Snow Height, hb	1.93 ft.
Clear Ht. from top of balanced	
snow load to parapet, hc	1.57 ft.
hc/hb > 0.2	0.82 Therefore, design for drift
Height of Snow Drift, hd	1.5 Figure 7-9 (ASCE 7-05)
Width of snow drift, w	6 ft.

Surchage load, pd

32.7 psf

Date: __04-24-2015 _____ Project Name: __AWE-MUNJOY HILL ____ Project Number: __ME5040 ____ Designed By: __AA ____ Checked By: __MSC ____

Check Roof Capacity:

Reference: • Building Plans by Leasure, Tuttle, Lee dated 03/23/1967.

Roof Design LL:	100 psf			
Calculated Flat Roof Snow:	42 psf			
Calculated Drift Snow:	32.7 psf			
Net Available Load:	25.3 psf			
Antenna Ballast Frame Load:	48 psf	>	25.3 PSF	N.G!

HDG recommends relocating the existing Alpha sector ballasted frame at least 4 ft. away from the parapets to meet the roof design loads provided in the building plans.

