Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date:

Analysis Date: 08-NOV-2011 17:25 Report Date: 11/16/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-3 Client ID: MW-B SDG: SE7341 Extracted by:

Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17 Lab Prep Batch: WG100677

Units: ug/L

Gasoline Range Organics 4-Bromofluorobenzene

Flags IJ

Results DF 10 1.0

PQL Adj.PQL 10 10

104%

Page 01 of 01 2EK10078.D

<u> 27 m</u>	<i>≒ 14 →</i>	::: == :::	

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11
Received Date: 11/03/11
Extraction Date: 11/04/11
Analysis Date: 23-NOV-2011 17:13

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-4 Client ID: MW-C SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

_	_				-
Compound	Flage	Results	DF 1.0	₽ QL 10	Adj.PQL
Phenol	u	9	1.0	10	9
Bis(2-Chloroethyl)ether	U	9	1.0	10	9
2-Chlorophenol	ש	_			· · ·
1,3-Dichlorobenzene	U	9	1.0	10	9
1,4-Dichlorobenzene	U	9	1.0	10	9
1,2-Dichlorobenzene	ש	9	1.0	10	9
2-Methylphenol	U	9	1.0	1.0	9
2,2'-Oxybis(1-chloropropane)	σ	9	1.0	10	9
N-Nitroso-di-n-propylamine	a.	9	1.0	10	9
3&4-Methylphenol	U	9	1.0	10	9
Hexachloroethane	IJ	9	1.0	10	9
Nitrobenzene	ប	9	1.0	10	9
Isophorone	a	9	1.0	10	9
2-Nitrophenol	ប	9	1.0	10	9
2,4-Dimethylphenol	σ	9	1.0	10	9
Bis(2-Chloroethoxy)methane	u	9	1.0	10	9
2,4-Dichlorophenol	U	9	1.0	10	9
1,2,4-Trichlorobenzene	σ	9	1.0	10	9
Naphthalene	U	9	1.0	10	9
4-Chloroaniline	U	9	1.0	10	9
Hexachlorobutadiene	u '	9	1.0	10	9
4-Chloro-3-Methylphenol	U	9	1.0	1.0	9
2-Methylnaphthalene	u	9	1.0	10	9
Hexachlorocyclopentadiene	U	9	1.0	1.0	9.
2,4,6-Trichlorophenol	U	9	1.0	10	9
2,4,5-Trichlorophenol	U	24	1.0	25	24
2-Chloronaphthalene	U	9	1.0	10	9
2-Nitroaniline	U	24	1.0	25	24
Dimethyl Phthalate	נו	9	1.0	10	9
2,6-Dinitrotoluene	U	9	1.0	10	9
Acenaphthylene	ប	9	1.0	10	9
3-Nitroaniline	ប	24	1.0	25	24
Acenaphthene	IJ	9	1.0	10	9
2,4-Dinitrophenol	U	24	1.0	25	24
Dibenzofuran	U	9	1.0	10	9
4-Nitrophenol	บ	24	1.0	25	24
2,4-Dinitrotoluene	U	9	1.0	10	9
Diethylphthalate	U	9	1.0	10	و
Fluorene	U	9	1.0	10	9
4-Chlorophenyl-phenylether	Ū	9	1.0	10	9
4-Nitroaniline	Ü	24	1.0	25	24
4,6-Dinitro-2-Methylphenol	Ū	24	1.0	25	24
N-Nitrosodiphenylamine	U	9	1.0	10	9
11 UT OF ABANT BRIERT TRUTING	•	_	2.0		-

Page 01 of 02 U8765.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11
Received Date: 11/03/11
Extraction Date: 11/04/11
Analysis Date: 23-NOV-2011 17:13

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-4 Client ID: MW-C SDG: SE7341 Extracted by: EC

Extraction Method: SWB46 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

U8765.D

		D 7 4			- 44 may
Compound	Flags	Results	DF	PQL	Adj.PQL
4-Bromophenyl-phenylether	ט	9	1.0	10	9
Hexachlorobenzene	U	9	1.0	10	9
Pentachlorophenol	บ	24	1.0	25	24
Phenanthrene	ซ	9	1.0	10	9
Anthracene	U	9	1.0	1.0	9
Carbazole	U	9	1.0	10	9
Di-n-butylphthalate	U	9	1.0	10	9
Fluoranthene	σ	9	1.0	10	9
Pyrene	U	9	1.0	10	9
Butylbenzylphthalate	ŭ	9	1.0	10	9
Benzo(a) anthracene	ט	9	1.0	10	9
3,3'-Dichlorobenzidine	ש	9	1.0	10	9
Chrysene	U	9	1.0	10	9
bis(2-Ethylhexyl)phthalate	ש	9	1.0	10	9
Di-n-octylphthalate	σ	9	1.0	10	9
Benzo(b) fluoranthene	U	9	1.0	10	ġ
Benzo(k) fluoranthene	U	9	1.0	10	9
Benzo(a)pyrene	σ	9	1.0	10	9
Indeno(1,2,3-cd)pyrene	ਧ	9	1.0	10	9
Dibenzo (a, h) anthracene	υ	9	1.0	10	9
Benzo(g,h,i)perylene	ש	9	1.0	10	9
2-Fluorophenol		* 8%			
Phenol-D6		* 5%			
Nitrobenzene-D5		* 36%			
2-Fluorobiphenyl		44%			
2,4,6-Tribromophenol		* 30%			
Terphenyl-D14		* 26%			

02 of 02

Page

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 14-NOV-2011 14:56

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-4 Client ID: MW-C SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: CB

Analysis Method: SW846 8082 Lab Prep Batch: WG100447

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.POL
Aroclor-1016	ΰ	0.47	1.0	0.50	0,47
Aroclor-1221	τ	0.47	1.0	0.50	0.47
Aroclor-1232	די	0.47	1.0	0.50	0.47
Aroclor-1242	υ	0.47	1.0	0.50	0.47
Aroclor-1248	π	0.47	1.0	0.50	0.47
Aroclor-1254	υ	0.47	1.0	0.50	0.47
Aroclor-1260	ซ	0.47	1.0	0.50	0.47
Tetrachloro-m-xylene		67%			
Decachlorobiphenyl		* 35 %			

Page D1 of D1 7EK537.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11

Analysis Date: 09-NOV-2011 01:57

Report Date: 11/15/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-4 Client ID: MW-C SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: AC

Analysis Method: MEDEP 4.1.25

Lab Prep Batch: WG100439

Units: ug/L

Compound

0-Terphenyl

Diesel Range Organics

Flags Results

Page

PQL Adj.PQL DF 1.0 50

300

68%

01 of 01

AEK2057.d

Katahdin Analytical Services SE7341 page 0000038 of 0000096

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date:

Analysis Date: 08-NOV-2011 18:20

Report Date: 11/16/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-4 Client ID: MW-C SDG: SE7341 Extracted by:

Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17

Lab Prep Batch: WG100677

Units: ug/L

Flags Results DF POL Adj.POL Compound Gasoline Range Organics π 10 1.0 10 10 1124

4-Bromofluorobenzene

Page 01 of 01 2EK10079.D

REPORT OF ANALYTICAL RESULTS

Client:

Matt Reynolds

Drumlin Environmental, LLC 75 York St.

PO Box 392

Portland, ME 04112-0342

Lab Sample ID:

Report Date:

SE7341-004 12/13/2011 11-020

PO No.: Project:

EP#1120

Sample Description

Matrix

Filtered

Date Received

Sampled

Date

11/03/2011

MW-C						AQ		d) 	11/02/2011			11/03/2011				
Parameter	Result	Units	Adjusted PQL	Dilution Factor	PQL	Analytical Method	Analysis Date	Ву	Prep Method	Prepped Date	Ву	ФС	Notes			
ANTIMONY	0,036	mg/L	0.00в	1	0.008	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2				
ARSENIC	0.014	mg/L	0.008	1	0.008	SW846 6010	11/10/11	EAM	SW848 301	0 11/10/11	NAT	BK10ICW2				
BARIUM	0.0675	mg/L	0,0050	1	0.005	SW846 6010	11/10/11	EAM	SW848 301	0 11/10/11	NAT	BK10ICW2				
CADMIUM	U 0.000049	mg/i	0,0100	1	0.01	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10lCW2				
CHROMIUM	J 0.0012	mg/L	0.0150	1	0.015	SW848 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10lCW2				
COPPER	J 0,0056	mg/L	0.0250	1	0.025	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10lCW2				
LEAD	J 0.003	mg/L	0.005	1	0.005	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2				
MERCURY	J 0.02	ug/L	0.20	1	0.2	SW846 7470	11/8/11	NAT	SW846 747	0 11/7/11	NAT	BK07HGW3	ļ			
NICKEL	J 0.0259	mg/i	0.0400	1	0,04	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10lCW2				
SELENIUM	U 0,0024	mg/L	0.010	1	0.01	SW848 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	8K10lCW2				
SILVER	U 0.00026	mg/L	0.0150	1	0.015	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2				
ZINC	J 0.0214	mg/L	0.0250	1	0.025	SW846 6010	11/10/11	EAM	SW846 301	io 11/10/11	NAT	BK10ICW2				

	en parametalentakon erteaka Landrian erteakan erteakan erteakan erteakan erteakan erteakan erteakan erteakan er Territorian erteakan	e and analysis and a				and the second s		elijakove jeganijem Lena 42 seksov
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ing or Target State of the Wild The Carlot State of the Wilder	en a substance of the s	राष्ट्र वर्षा कर कर के प्राप्त के अग्रेस स्थाप के अग्रेस स्थाप के प्राप्त कर के प्राप्त कर के प्राप्त कर कर क विक्री के अर्थ के विकार के विकार के प्राप्त कर के प्राप्त कर कर कर की किए कर किए की प्राप्त कर की किए की प्राप्त		公司法官官 國軍 日子公司原	n valender eine vinger in eine eine eine valender	
			12 00 00 00 00 00 00 00 00 00 00 00 00 00					55 55 55 5 <u>4</u> 55 55 55 55
ই মুদ্র ২ ২২ ২ জালার্ডার বৃদ্ধির	भित्रपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्षपुरिक्ष १९५१ - १९५१ - १९५१ - १९५५ - १९५५ - १९५५ - १९५५ - १९५५ - १९५५ - १९५५ - १९५५ १९७			के के के स्थार है। हैं	ខ្លាស់ក្នុងនេះ ជនជា ស៊ី		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	Æ.	<u> </u>	ž.	ā	<u>.</u> 2	Ė	, 	Ē

.

Client: Drumlin Environment

Project: EP#1120

PO No: Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 26-NOV-2011 11:15 Report Date: 12/01/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-5 Client ID: MW-A SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: JCG

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	POL	Adj.PQL
Phenol	บ	9	1.0	10	9
Bis(2-Chloroethyl)ether	U	9	1.0	10	9
2-Chlorophenol	17	9	1.0	10	9
1,3-Dichlorobenzens	ט	9	1.0	10	9
1,4-Dichlorobenzene	U	9	1.0	10	9
1,2-Dichlorobenzene	U	9	1.0	10	9
2-Methylphenol	U	9	1.0	10	9
2,2'-Oxybis (1-chloropropane)	U	9	1.0	10	9
N-Nitroso-di-n-propylamine	Ū	9	1.0	10	9
3&4-Methylphenol	U	9	1.0	10	9
Hexachloroethane	U	9	1.0	10	9
Nitrobenzene	Ū	9	1.0	10	9
Isophorone	Ū	9	1.0	10	9
2-Nitrophenol	ซ	9	1.0	10	9
2,4-Dimethylphenol	บ	9	1.0	10	9
Bis(2-Chloroethoxy)methane	ע	9	1.0	10	9
2,4-Dichlorophenol	Ū	9	1.0	10	9
1,2,4-Trichlorobenzene	U	9	1.0	10	9
Naphthalene	σ	9	1.0	10	9
4-Chloroaniline	σ	9	1.0	10	9
Hexachlorobutadiene	σ	9	1.0	10	9
4-Chloro-3-Methylphenol	σ	9	1.0	10	9
2-Methylnaphthalene	Ū	9	1.0	10	9
Hexachlorocyclopentadiene	σ	9	1.0	10	9
2,4,6-Trichlorophenol	u	9	1.0	1.0	9
2,4,5-Trichlorophenol	τ	24	1.0	25	24
2-Chloronaphthalene	υ	9	1.0	10	9
2-Nitroaniline	ช	24	1.0	25	24
Dimethyl Phthalate	U	9	1.0	10	9
2,6-Dinitrotoluene	Ū	9	1.0	10	9
Acenaphthylene	v	9	1.0	10	9
3-Nitroaniline	U	24	1.0	25	24
Acenaphthene	บ	9	1,0	10	9
2,4-Dinitrophenol	Ū	24	1.0	25	24
Dibenzofuran	ΰ	9	1.0	10	9
4-Nitrophenol	บ	24	1.0	25	24
2.4-Dinitrotoluene	Ū	9	1.0	10	9
Diethylphthalate	ับ	9	1.0	10	9
Fluorene	Ū	9	1.0	10	9
4-Chlorophenyl-phenylether	ם	9	1.0	10	9
4-Nitroaniline	ם	24	1.0	25	24
4,6-Dinitro-2-Methylphenol	- U	24	1.0	25	24
N-Nitrosodiphenylamine	Ū	9	1.0	10	9

Page 01 of 02 U8788.D

Katahdin Analytical Services SE7341 page 0000043 of 0000096

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11

Analysis Date: 26-NOV-2011 11:15

Report Date: 12/01/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-5 Client ID: MW-A SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: JCG

Analysis Method: SW846 8270C

Lab Prep Batch: WG100443

Units: ug/L

Compound	Plags	Results	DF	PQL	Adj.PQL
4-Bromophenyl-phenylether	U	9	1.0	10	9
Hexachlorobenzene	IJ	9	1.0	10	9
Pentachlorophenol	IJ	24	1.0	25	24
Phenanthrene	ซ	9	1.0	10	9
Anthracene	ד	9	1.0	10	9
Carbazole	U	9	1.0	10	9
Di-n-butylphthalate	ט	9	1.0	10	9
Fluoranthene	U	9	1.0	10	9
Pyrene	U	9	1.0	10	9
Butylbenzylphthalate	σ	9	1.0	10	9
Benzo(a) anthracene	ช	9	1.0	10	9
3,3'-Dichlorobenzidine	U	9	1.0	10	9
Chrysene	ש	9	1.0	10	9
bis(2-Ethylhexyl)phthalate	σ	9	1.0	10	9
Di-n-octylphthalate	ש	9	1.0	10	9
Benzo(b) fluoranthene	Ū	9	1.0	10	9
Benzo(k) fluoranthene	ט	9	1.0	10	9
Benzo(a) pyrene	U	9	1.0	10	9
Indeno(1,2,3-cd)pyrene	U	9	1.0	10	9
Dibenzo(a,h)anthracene	U	9	1.0	10	9
Benzo(g,h,i)perylene	U	9	1.0	10	9
2-Fluorophenol		* 6%			
Phenol-D6		* 6%			
Nitrobenzene-D5		* 32%			
2-Fluorobiphenyl		* 39%			
2,4,6-Tribromophenol		* 24%			
Terphenyl-D14		* 20%			

U8788.D Page 02 of 02

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 14-NOV-2011 17:32

Report Date: 12/01/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-5 Client ID: MW-A SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: CB

Analysis Method: SW846 8082 Lab Prep Batch: WG100447

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.PQL
Aroclor-1016	U	0.47	1.0	0.50	0.47
Aroclor-1221	U	0.47	1.0	0.50	0.47
Aroclor-1232	ע	0.47	1.0	0.50	0.47
Aroclor-1242	U	0.47	1.0	0.50	0.47
Aroclor-124B	U	0.47	1.0	0.50	0.47
Aroclor-1254	ซ	0.47	1.0	0.50	0.47
Aroclor-1260	U	0.47	1.0	0.50	0.47
Tetrachloro-m-xylene		52%			
Decachlorobinhenyl		* 24%			

Page 01 of 01 7EK543.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 09-NOV-2011 02:34

Report Date: 11/15/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-5 Client ID: MW-A SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: AC

Analysis Method: MEDEP 4.1.25

Lab Prep Batch: WG100439

Units: ug/L

AEK2058.d

Flags Results DF 200 1.0 PQL Adj.PQL DayoqaoD 50 Diesel Range Organics 47

O-Terphenyl

01 of 01 Page

56%

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11

Extraction Date:

Analysis Date: 08-NOV-2011 19:15

Report Date: 11/16/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-5 Client ID: MW-A SDG: SE7341 Extracted by:

Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17 Lab Prep Batch: WG100677

Units: ug/L

OHILLS: U

Compound Gasoline Range Organics 4-Bromofluorobenzene Flags U Results DF 10 1.0

PQL Adj.PQL 10 10

108%

Page 01 of 01 2EK10080.D

	-	

Drumlin Environmental, LLC

Hydrogeologic and Engineering Consultants

January 6, 2012

Mr. Alan Lerman
E. Perry Iron & Metal Co., Inc.
115 Lancaster Street
Portland, Maine 04101

Subject: Groundwater Sampling Results - Lancaster & Somerset Street Properties

Dear Mr. Lerman:

At your request, Drumlin Environmental, LLC (Drumlin) has completed groundwater sampling and analysis at your Scrap Metal Recycling Facility properties on Lancaster and Somerset Streets. Previous groundwater monitoring has been conducted at these properties in 2005 by Woodard & Curran and in 2008 by Acadia Environmental Technology. This letter describes the methodology and results of the groundwater analysis and is intended to comply with the City of Portland Code Chapter 31-1 regarding Scrap Metal Recycling Facilities.

Sampling Methodology. Prior to conducting the sampling, Drumlin contacted Tewhey Associates, who represents the City of Portland, and reviewed the wells to be sampled and the analyses to be performed. Mr. Tewhey indicated that the sampling should include the same wells as were sampled in 2008. These included MW-3, MW-5 and MW-7 on the Lancaster Street property and wells MW-A, MW-B and MW-C on the Somerset Street property. (The locations of these wells are shown on Figures 1 and 2, prepared for the 2005 samples conducted by Woodard & Curran and attached to this letter report.) Mr. Tewhey requested that the groundwater samples be analyzed for the same parameters as in 2008, including metals, polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), diesel range organic compounds (DRO) and gasoline range organic compounds (GRO).

Groundwater sampling was conducted on November 2, 2011. Prior to beginning sampling at each well, Drumlin measured the depth to groundwater and inserted new, dedicated low-density polyethylene (LDPE) tubing into the well. Each well was purged with a variable speed peristaltic GeoPump. The pumping rates were set to induce low drawdown where feasible. Wells MW-3, MW-5, MW-7 and MW-B were capable of maintaining a constant drawdown at a pumping rate between 200 and 300 ml/min. Wells MW-A and MW-C would not sustain a constant drawdown at 200 ml/min or less. Therefore these wells were sampled using a hybrid grab sample approach. The well was purged for a minimum of 10 minutes, before sampling was begun. When the well ran dry, the pump was shut off and allowed to recharge before sampling was continued. Due to the slow recharge rate of MW-A and MW-C, Drumlin collected water samples for several parameters on 11/3/11, as noted on the field sheets.

Katahdin Analytical Services

Login Chain of Custody Report (Ino1) Nov. 03, 2011

02:29 PM

Quote/incoming: DRUMAQUEOUS

Login Number: SE7341

Account: DRUMLI001

NoWeb

Drumlin Environmental, LLC

Project:

Laboratory Sample ID		Client Sample Number	Collect Date/Time	Receive Date	₽R	Verbal Date	Due Date	Mailed	
SE7341-6	N	nw-3	02-NOV-11 16:55	03-NOV-11			16-NOV-11		
Matrix		Product	Hold Date (shortest)	Boitle Type		Bottle C	'ount	Comments	
Aqueous	s	MEDEP4.1.26	08-NOV-11	1L N-Amber (3)ass				
Aqueous	5	MEDEP4.2.17	1B-NQV-11	40mL Vial+Ho	Ci				
Aquacus	S	SW3010-PREP	30-APR-12	250mL Plasti	CONH+2				
Aquecus	8	SW6010-ANTIMONY	30-APR-12	250mL Plastk	c+HNO3				
Agueous	S	SW5616-ARSENIC	30-APR-12	250mi. Plastk	c+HNO3				
Aqueous	S	SW8010-BARIUM	30-APR-12	250ml. Plastic	CONH+				
Aqueous	S	SWS010-CADMIUM	30-APR-12	250mL Plastk	EONH+2				
Aqueous	8	SW6010-CHROMIUM	30-APR-12	250mL Plastk	EONH+				
Адмерия	Ş	SW5010-COPPER	30-APR-12	250mi, Plastk	EONH+a				
Ациерия	S	SW6010-LEAD	30-APR-12	250mL Pistell	CONH+				
Aqueous	s	SW8010-NICKEL	30-APR-12	250mL Plastle	±+HNO3				
Aqueous	S	SW6010-SELEN(UM	30-APR-12	250mL Plasti	c+HNO3				
Aqueous	S	SW8010-SILVER	30-APR-12	250ml. Plasti	CONH+:				
Aqueous	3	SW6010-ZINC	30-APR-12	250mL Pissti	EONH+a				
Aqueous	S	SW7470-MERCURY	30-NOV-11	500ml Plasti	EONH+				
Aqueous	5	SW8082	G9-NOV-11	1L N-Amber (3(ass				
Aquaous	5	SW8260FULL6MI.	16-NOV-11	40mi. Viel+H	C				
Адывоия	S	6W9270BNA	09-NOV-11	1L N-Amber (3(a56				
SE7341-7	Т	RIP BLANK	02-NOV-11 16:55	03-NOV-11			16-NOV-11		
Matrix		Product	Hold Date (shortest)	Bollie Type		Bottle C	Count	Comments	
Aqueous	s	MEDEP4.2.17	16-NOV-11	40mL Visi÷H	CI				
Aqueous	S	SW8280FULL5ML	16-NOV-11	40mL Visi+H	CI				

Total Samples: 7

Total Analyses:

110

Page: 3 of 3

П				-						П	П	-1		П		П		П	1	П	П	П			ļ		
	Suiz	Ħ	L	L	Ц	L	L	Н		Н	Ц		Ц	Н	L	Н		•		Ц	Ц	Н	Н			Ц	
	mulbo2																										
	mulnala2					ſ		٠		,		•	-			1		•		•		·				1	
	Multzeroq																										
	Mickel	Ħ		·		-		•		ſ			٠	ſ"		·		٠.٦		•	·	٤, ا		,		7	
	muizanyeM																										
	Lead				•				·			Ľ.				·	ŀ	ſ		·	ŀ			٠		-	
:tt	ficial			-								,				ŀ				•							
1.	Соррег				·	٠.				-		,	- 1	-		٠					٠	-			•	٦.	
	Colbalt			٠		L							L			ŀ							L				
	ណៈវិភាពការ			Ŀ	٠	-	L	ŀ		-		•	ŀ	,	L	Ŀ	·	٢'			Ŀ	ſ				-	
	лиideS																										
	radmims		Γ	Ī		7			•	1				-		ŀ					:	:					
	muhsd			ŀ		-										ŀ	ŀ							٠	•		
	Arsentc			ŀ		ŀ		7	7"	if.	Γ		ŀ			ŀ				ŀ	ŀ	·		,	,	ŀ	
	ynomtinA		Γ	Ŀ	:	7		·	,			·				7	·					-		٠	•		
	ово													Γ											,		
	ORO																										
	PCBs (Arochlor 1254)				ŀ	١.						Ŀ										,		ſ			
	anariaeoroldairī	1											-	-												,	
	յеւቲցւ γ- ծաչի տеthyl ether																										
	ansitiaoroddahT I,1,1,					·				٠												•					
	anarbaosolrisiOS,1-ab								ſ'	Ŀ	L			ŀ								·			L		
7.7	Ethyl tedary-butyl ether									L																	
Ę Į	դ ք Օհեւխտеփար	Ħ				,				١			-	[
	Methyl tert-butyl ether					ŀ								-				۲,							1	_	
	Tert butyl ether						Ĺ	Ĺ		Ĺ	Ĺ	Ĺ	L				L	L		L	L						-:
	anotack		Ĺ			-				-	Ĺ	Ĺ		-						L	Ĺ		L		٠,		= =
		, , , , , , , , , , , , , , , , , , ,	ſ	[ľ			-													## 1 t.1t 11:1
H	Ţ,ţ		\vdash	H	\vdash	H	l	H	H	_	┞	H	L	┞	\vdash	L	-	H	H	-	\vdash	H	-	H	\vdash	\vdash	# 1
L		<u> </u>		=				-				4				#				=	L	L	L	+	L		

and the man of the state of the

Metals: Metals were detected in the groundwater samples from all of the wells at concentrations that ranged from less than 1 ug/L (estimated) to 2,000 ug/L.

...e .eQce. @n eut Comparison of the 2011 groundwater data with the earlier 2005 and 2008 data does not indicate significant changes or deterioration of groundwater quality. Water quality at the site appears to be steady or improving for most organic parameters. VOCs were all low and below the applicable Maine Maximum Exposure Guideline (MEG) and USEPA Maximum Contaminant Level (MCL) values. GRO constituents, which were detected in MW-7 and MW-C during 2008, were not detected in any wells during 2011. DRO concentrations dropped significantly in MW-7 and MW-A between 2008 and 2011, and varied by only a small amount in the other wells.

There were several parameters that were measured in concentrations that exceeded the MEG and/or MCL values during the 2011 groundwater sampling. These are summarized below.

w nuG	aep,eeGrG	aeGnOt tt	
		()	()
MW-3	Antimony	4 (J)	3/6
MW-5	Arsenic	76	10 / 10
	Cadmium	1.7 (J)	1/5
MW-7	Arsenic	25	10 / 10
	Cadmium	1.4 (J)	1/5
	Nickel	20.8 (J)	20 /
MW-A	Antimony	26	3/6
	Arsenic	25	10 / 10
	Nickel	87.8	20 /
MW-B	Antimony	3 (J)	3/6
	Cadmium	10.8	1/5
	Nickel	28.4 (J)	20 /
	Zinc	2000	2000 /
MW-C	Antimony	36	3/6
	Arsenic	14	10 / 10
	Nickel	25.9 (J)	20 /

Note: (J) indicates an estimated concentration detected below the laboratory reporting limit.

It should be noted that the MEG values published by the Maine Center for Disease Control (CDC) in September 2011 include several changes relevant to compounds detected at the E. Perry properties. The cadmium MEG value was changed from 3.5 mg/L in 2008 to 1 mg/L in 2011. The nickel MEG was changed from 140 mg/L in 2008 to 20 mg/L in 2011. Additionally, the Maine CDC formerly listed MEGs of 50 ug/L for gasoline (i.e., GRO) and fuel oil (i.e., DRO). These criteria are not included in the 2011 MEG listing and have been replaced by values for individual petroleum fractions.

We p p wo. n In November 2011 groundwater samples were collected from properties on Somerset Street and Lancaster Street in Portland that are operated by E. Perry Iron & Metal Company. Groundwater samples had also been collected from monitoring wells on these properties in 2005 and in 2008.

The 2011 groundwater quality data indicate that organic compounds including VOCs, SVOCs and PCBs were either not detected or were detected at concentrations significantly below the MEG and MCL values. Diesel range organic compounds are present in groundwater at all locations sampled. In 2011, the DRO concentrations were significantly lower in well MW-7 at the Lancaster Street property and at MW-A at the Somerset Street property. A small increase in DRO concentration was measured in well MW-B, and small decreases in DRO concentrations were measured in other wells.

Several metals were detected in groundwater at concentrations that equaled or exceeded the MEG and/or MCL values, including antimony (4 of 6 wells), arsenic (4 of 6 wells), cadmium (3 of 6 wells), nickel (4 of 6 wells) and zinc (1 of 6 wells).

The E. Perry properties are located in an area of Portland that has been industrialized for many years. Public drinking water is provided throughout the area by the Portland Water District and there are not known to be any groundwater users who might be exposed to constituents detected in the groundwater at the E. Perry properties. According to a July 20, 2005 correspondence from Tewhey Associates to the City of Portland, the area of Portland where the E. Perry properties are located has been designated as a groundwater non-attainment zone by the Maine Department of Environmental Protection and there is no requirement to conduct remediation of groundwater.

If there are any questions regarding the information described in this letter or the data include in the attachments, please do not hesitate to call me at any time.

Very truly yours,

DRUMLIN ENVIRONMENTAL, LLC

Matthew D. Reynolds, P.E., C.G. Senior Member

Encl: Figures 1 & 2

Attachments A & B

Cc: Alan Wolf, Esq.

G G

O . a Charve Compensator Common & November 2011

).podeW vacquivokodw. e. Gai voG wi. eu ,roGanni a NoveWeer 2011

. c. Character. ar Carpathuan, r Commis NoveWeer 2011

).iptie x-valvextive e the var wi. eu ,rami a NoveWeet 2011

<u>....</u>u

FIELD SAMPLING RECORDS

SITE: <i>E</i>	Perry		JOB	NO: <u>//-</u>	0.20		_ DATE:	11-2-11		
SAMPLE LOCATION: MW-7 TIME: Start: 0915 End: 1035										
WELL DATA:										
WELL DEPTH (ft): 17.65 WELL MATERIAL: X_PVC SS. WELL DIAMETER (in): 2-inch LOCKED: YES NO										
CASING INTACT: VES NO HEIGHT OF WATER (ft):										
SAMPLING	G AND DE	CONTA	MINATI	ON:			-			
PURGE EQUIPMENT: PUMP: Peristaltic Geopump TUBING: LDPE Dedicated: Yes No SAMPLING EQUIPMENT: Peristaltic GeoPump Intake: DECONTAMINATION PROCEDURES: Detergent & Potable Water										
PURGE DA	TA:									
Elasped Time (min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ft)	Temp (°C)	рН	Spec Cond	ORP (mV)	D,O, (mg/L)		
5	200	13	4.58	13.6	6.4	770	87	49-14-14-14		
10		2	4.58	12.9	6.5	760	54			
15		3	4.58	13.4	6.5	790	33			
70		7	4.58	13.5	4.5	770	20			
25		5	X.58	13.6	6.6	770	-3			
3 0	V	6	4.58	13.6	6.6	770	-6	500m.		
35 200 7 4.58 12.7 6.6 740 -10 0.3						6.3				
PURGE OB	PURGE OBSERVATIONS: water clear- no color or odar									
SAMPLES: PCB-5VOA-DRO-6RO-VOA-MOLLO										

SITE: <u>E. Perry</u> JOB NO: 1/						0.20		DATE:_	DATE: 1/-2-1/	
		LOCATION								
WJ	ELĻ DA	ATA:					٠			
WE	ELL DE	PTH (ft):	12.30			WELL M	IATERIAL	: <u>X</u> PVC (in): <u>2-in</u>	SS	
DE	PTH T	O WATER (ft): /. _	0/		LOCKEI);	· YES	NO	
CASING INTACT: YESNO HEIGHT OF WATER (ft):										
SA	MPLIN	IG AND DE	CONTA	MINATI	ON:					
PU.	RGE E	QUIPMENT	: PUMP	: <u>Peristal</u>	tic Geopu	<u>mp</u>	rubing:_	LDPE Ye	N.	
SA	MPLIN	G EQUIPM	ENT: <u>P</u>	eristaltic (GeoPump				No	
DE	CONTA	AMINATIO	N PROCE	EDURES:	Detergen	t & Potab	le Water_			
PU.	RGE D	ATA:								
	Elasped Time (min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ft)	Temp (°C)	рĦ	Spec Cond	ORP (mV)	D.O. (mg/L)	
	5	350	1,5	4.69	15.Z	6.9	770	+2		
	15		4.5	4.78	15.3	67	620	-38		
	Ző		6,0	4.78	15.2	6.7	600	-42		
	25	\\ \	7.5	4.78	15.3	67	610	-45	0.2	
PURGE OBSERVATIONS: wester clear as as he or oday										
SAl	MPLES	: PCB-SI	M-DI	20 -672	0-V0	A-mo	kls			
						C A I ATD	1 ED. 1	nop		

;	SITE:_ <i></i>	Perry		JOB	NO: <u>Н</u>	-020		DATE:_	1-Z-17		
:	SAMPLE I	OCATION	: Mw.	<u> </u>		TIME: Start: 1200 End: 1605					
,	WELL DA	TA:			-	-					
1	WELL DEI	PTH (ft): <u>/</u>	1.73				ATERIAL:				
]	ЭЕРТН ТС	WATER (ft): 3, c]	LOCKED		YES YES	NO			
1	HEIGHT O	F WATER	(ft):	·	CABINO	HTINOI.	11.0	110			
	SAMPLING AND DECONTAMINATION:										
	PURGE EQUIPMENT: PUMP: Peristaltic Geopump TUBING: LDPE Dedicated: Yes No SAMPLING EQUIPMENT: Peristaltic GeoPump Intake:										
I	DECONTA	MINATIO	N PROCI	EDURES:	Detergent	: & Potabl	e Water				
J	PURGE DA	ATA:									
	Elasped Time (min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ff)	Temp (°C)	pН	Spec Cond Walnu for	ORP (mV)	D.O. (mg/L)		
1202	5	~ 200	1,0	6.1	15.1	6.8	71990	- 92			
1213	10	14	7.0	9.1	15.3	6.8	1030	-8/			
1218	15	и	3.0	12.1	15.1	6.7	71990	-92			
1222	19		-4.0	dry	15.1	6.7	71990	-107	NA		
	Tun	· \ \	let	recher	gc o+me		1,000	<u> </u>	longe		
	1335	Sample		11-012.	ne) +	SION	2 ZeD) ,	~) //	0		
	ใปิรุโน-	215 km - 5	THE T	Lark	- for F	टिंड इक	p+fin	34 Filling	DES		
P	URGE OB	SERVATIO	ONS: _W	et s	1. W.	ful for	- VBAJ	6fb -			
<u>(</u>	lea for	e mobile	i	,							
S	AMPLES:	WA, GR	D, Me	tels, D	Ra, svi	ort + 1	PCB's				
	SAMPLER:										

Sľ	ΤΕ:_ _ ξ	Perry		JOB	NO: //-	20		DATE: 1	1-2-11		
		OCATION	Mu	1-B	1	TIME: Sta	art: 1230	End:_/\$	610		
WELL DATA:											
WELL DEPTH (ft): 13.60 WELL MATERIAL: X PVC SS WELL DIAMETER (in): 2-inch											
DI	зртн тс	WATER (ft): <u>4.7</u>	3	I	OCKED	1	₩YES	NO		
H	CASING INTACT: VES NO HEIGHT OF WATER (ft):										
SA	MPLIN	G AND DE	CONTA	MINATI	ON:						
PURGE EQUIPMENT: PUMP: Peristaltic Geopump TUBING: LDPE Dedicated: Yes No SAMPLING EQUIPMENT: Peristaltic GeoPump Intake:											
	ECONTA	MINATION	V PROCI	EDURES:	Detergent	<u>& Potabl</u>	e Water_				
	Elasped Time (min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ft)	Temp (°C)	pН	Spec Cond	ORP (mV)	D.O. (mg/L)		
	5	300	1,5	5.65	13,5	6.8	400	-19			
	20		60	5.65	135	68	400	22			
	25		7.5	5765	13.5	6.8	400	29			
	30	V	9.0	<i>5</i> ?65^	13.5	6.8	400	32	1.0		
L					,			4			
	-										
?U	RGE OB	SERVATIO	ONS: 12	hall	has t	425	odor-1	at Mis	5		
		o- was									
šΑ	MPLES:	PCB-5	10A-1	D20-6	720 - VO	A-101	ctob				
	SAMPLER: WANTE										

SITE	:_ <u>E</u>	Perry		јов	NO:_ <u>//-</u>	226		DATE: _ <	1-2-1)	
SAM	PLE L	OCATION:	MW	-A	• ,	TIME: Sta	art: 1355°	End:	(630	
WEI	L DA	TA:								
WEL	L DEP	TH (ft):	12.6					<u>X</u> PVC		
DEPT	гн то	:	₩YES _	NO						
HEIG	CASING INTACT:YES NO HEIGHT OF WATER (ft):									
SAM	SAMPLING AND DECONTAMINATION:									
PUR	GE EQ	UIPMENT:	PUMP	:_Peristal	tic Geopun		UBING:_L Dedicated:	DPE Yes	No:	
SAM	PLINC	EQUIPME	ENT: <u>P</u>	eristaltic (GeoPump_		Intake:	vekreitelistelistelistelistelis	>	
DEC	ATAC	MINATION	I PROCI	EDURES:	Detergent	& Potabl	e Water		49 -	
PUR	GE DA	ATA:							, Ma	
ľ	asped Ime min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ft)	Temp (°C)	рН	Spec Cond	ORP (mV) 	D.O. (mg/L)	
1402 €	5	300	1.5	9.8	165	69	>1990	-8/		
145-1	dee D	ton12		~12.5		7.0	7/983	-12e	NA	
1 * -	mode	S Pup -	to Cet	rechar GRO		els (n 250 m	23-	3607	
APT V							T.	70 rec	loge	
		collect				me)				
ł		n 1725			•		o Koz	SV2A +	PCB'	
	1									
PURC	GE OB	SERVATIO	NS:	vater c	lea-l	as to	whide !	-10	cola	
	_							· · · · · · · · · · · · · · · · · · ·		
SAMI	PLES:	VOA G	W, 8	mol	<u>es</u>	· · · · · · · · · · · · · · · · · · ·				
	•	,	•			C A Y ADJ	DD. K	15		

S	ITE: <u>E</u>	Perry		JOB	NO: <u>//</u>	-020	•	DATE:	11-2-11		
S	AMPLE L	OCATION	Mk	1-3		TIME: Sta	art: 16 3 5	_ End:			
V	VELL DA	TA:									
W	VELL.DEF	PTH (ft):	12.30	<u> </u>			ATERIAL: AMETER (
D	ЕРТН ТО	WATER (ft): 4 , 5	<i>₹</i>)	LOCKED	;	LYES	NO		
CASING INTACT: YES NO HEIGHT OF WATER (ft):											
S.	AMPLIN	G AND DE	CONTA	MINATI	ON:						
PURGE EQUIPMENT: PUMP: Peristaltic Geopump TUBING: LDPE Dedicated: Yes No SAMPLING EQUIPMENT: Peristaltic GeoPump Intake:											
D	ECONTA	MINATIO	N PROCE	EDURES:	Detergent	& Potabl	e Water				
P	URGE DA	ATA:						٠			
	Elasped Time (min)	Flow Rate (mL/min)	Vol. Purged (L)	Water Depth (ft)	Temp (°C)	pН	Spec Cond	ORP (mV)	D.O. (mg/L)		
	5	382	1.5	4.65	130	7.8	290	19	Angel.		
	10		3.0	4.65	13.69	6.9	320	15	-		
	15		4.5	4.65	13.0	67	290	16			
	20		6.0	4.65	13.0	6,6	270	20			
	25	V	7.5	4.65	13.0	6.6	280	18	Z, O		
				<u>. </u>			-		VARIABLE PARAMETERS		
PΙ	PURGE OBSERVATIONS: Water clear-no color or odor										
				······································	-	1.1.1.					
S	AMPLES:	PCB-SV	0A-I	R0-6	120 - K	sa em	ebb				
	SAMPLER:										

<u>.... e e G. uG</u>u

LABORATORY REPORTS OF ANALYSIS

...e G.e. Gu.e.n uwa.ew.en w p.e. e.e.n ap, wG r .wGw wGwGhuu o e e muur, an (wwn, Ge eG). Go Go e e p.e. Go GW.umv er WGG nwu Gu.e., e muur, pwo u... e pGw) .n .eo GwG pwo u G.n w.w)n, e p.e.m

December 2, 2011

Mr. Matt Reynolds Drumlin Environmental, LLC 75 York St. PO Box 392 Portland,ME 04112-0342

RE: Katahdin Lab Number:

SE7341

Project ID:

EP#1120

Project Manager:

Ms. Shelly Brown

Sample Receipt Date(s): November 03, 2011

Dear Mr. Reynolds:

Please find enclosed the following information:

- * Report of Analysis (Analytical and/or Field)
- * Quality Control Data Summary
- * Chain of Custody (COC)
- * Login Report

A copy of the Chain of Custody is included in the paginated report. The original COC is attached as an addendum to this report.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. The results contained in this report relate only to the submitted samples. This cover letter is an integral part of the ROA.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in an attached technical narrative or in the Report of Analysis.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Please go to http://www.katahdinlab.com/cert.html for copies of Katahdin Analytical Services Inc. current certificates and analyte lists.

KATAHDIN ANALYTICAL SERVICES

leborah & Nadeau

12/02/2011

Date

TECHNICAL NARRATIVE

Organics Analysis

The samples of Work Order SE7341 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates 1, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA, and/or Maine HETL, Method 4.2.17, Modified Method for the Determination of GROs, 9/95, and/or for the specific methods listed below or on the Report of Analysis.

8260B Analysis

Samples SE7341-1, 2, and 4 had high recoveries for one or more-surrogates, which were outside of the laboratory established acceptance limits. Since a high recovery would indicate a high bias and there were no target analytes detected above the PQL in the aforementioned samples, the samples were not reanalyzed.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are
statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the
LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits.
Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in
the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances.
The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are
evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no
corrective action is taken, as long as the LCS is acceptable.

MEDEP 4.2.17 Analysis

Sample SE7341-6 had a high recovery the surrogate 4-bromofluorobenzene, which was outside of the laboratory established acceptance limits. Since a high recovery would indicate a high bias, and there was no GRO detected above the PQL in the sample, the sample was not reanalyzed.

8270C Analysis

Samples SE7341-1 through 6 had low or no recoveries for one or more surrogates, which were outside the laboratory established acceptance limits. Based on the sample chromatograms and similar surrogate deviation for other analyses, the samples were not reextracted.

The method blank WG100443-1 had a high response for the internal standard perylene-d12 that resulted in a %D which was outside the laboratory acceptance limit of -50% to +100% of the response of the sinternal standard of the daily calibration verification standard.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are statistically derived for the full list of spiked compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is to take corrective action only if the number of spiked analytes in the LCS that are outside of the QC limits is greater than the DoD QSM allowable number of exceedances.

The LCS report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

8082 Analysis

Samples SE7341-1, 2, 4, 5, and 6, and the method blank WG100447-1 had low recoveries for the surrogates TCX and/or DCB, which were outside the laboratory established acceptance limits. The samples were reextracted nine days out of hold time and analyzed. The samples and the associated method blank had similar surrogate deviations. The results for both extractions are reported. Due to no additional aliquot, samples SE7341-4 and 5 were not able to be reextracted.

The LCSD WG100447-3 had a low recovery for Aroclor 1260, which was outside the laboratory established-acceptance limits. The associated LCS-was acceptable.

The LCS WG101328-2 had low recoveries for Aroclor 1016 and Aroclor 1260, which were outside the laboratory established acceptance limits. The associated LCSD was acceptable.

There were no other protocol deviations or observations noted by the organics laboratory staff.

37.12

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40%-difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

المارية المارية المارية المحمود المحموج والمصاليات

DM-002 - Revision 4- 11/01/2011

KATAHDIN ANALYTICAL SERVICES – INORGANIC DATA QUALIFIERS (Refer to BOD Qualifiers Page for BOD footnotes)

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called-Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).
- 1-7 The laboratory's Practical Quantitation Level could not be achieved for this parameter due to sample composition, matrix effects, sample volume, or quantity used for analysis.
- A-4 Please refer to cover letter or narrative for further information.
- MCL Maximum Contaminant Level
- NL No limit
- NFL No Free Liquid Present
- FLP Free Liquid Present
- NOD No Odor Detected
- TON Threshold Odor Number
- Please note that the regulatory holding time for pH is "analyze immediately". Ideally, this analysis must be performed in the field at the time of sample collection. pH for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.
- Please note that the regulatory holding time for DO is "analyze immediately". Ideally, this analysis must be performed in the field at the time of sample collection. DO for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.
- Please note that the regulatory holding time for sulfite is "analyze immediately". Ideally, this analysis inust be performed in the field at the time of sample collection. "Sulfite for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.
- Please note that the regulatory holding time for residual chlorine is "analyze immediately". Ideally, this analysis must be performed in the field at the time of sample collection. Residual chlorine for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.

DM-003 - Revision 3 - 04/13/2011

Katahdin Analytical Services SE7341 page 0000005 of 0000096

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11

Extraction Date:

Analysis Date: 09-NOV-2011 21:43

Report Date: 12/13/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-1 Client ID: MW-7 SDG: SE7341 Extracted by:

Extraction Method: SW846 5030

Analyst: DJP

Analysis Method: SW846 8260B

Lab Prep Batch: WG100773 Units: ug/l

	#4#					- 11	- 41
CAS# 75-71-8	Compound Dichlorodifluoromethane	Flage U	Results 0.2	DF 1.0	PQL 10	жа у.Р оц 10	Adj.MDL 0.2
75-71-8 74-87-3	Chloromethane	U	0.2	1.0	10	10	0.4
74-87-3	Vinvl chloride	ti	0.4	1.0	10	10	0.4
	· · · · · · · · · · · · · · · · · · ·	-					0.5
74-83-9 75-00-3	Bromomethane	u	0.5 0.6	1.0	10 10	10	0.5
	Chloroethane	U		1.0		10	
75-69-4	Trichlorofluoromethane	U	0.2	1.0	10	10 5	0.2
75~35~4	1,1-Dichloroethene	σ	0.4	1.0	5	-	0.4
75-09-2	Methylene Chloride	σ	1	1.0	5	5	1
156-60-5	trans-1,2-Dichloroethene	σ	0.2	1.0	5	5	0.2
75-34-3	1,1-Dichloroethane	U	0.2	1.0	5	5	0.2
156-59-2	cis-1,2-Dichloroethene	σ	0.2	1.0	5	5	0.2
540-59-0	1,2-Dichloroethylene (total)	U	0.2	1.0	10	10	0,2
594-20-7	2,2-Dichloropropane	U	0.2	1.0	5	5	0.2
67-66-3	Chloroform	U	0.3	1.0	5	5	0.3
74-97-5	Bromochloromethane	U	0.2	1.0	5	5	0.2
71-55-6	1,1,1-Trichloroethane	ម	0.2	1.0	5	5	0.2
107-06-2	1,2-Dichloroethane	u	0.2	1.0	5	5	0.2
563-58-6	1,1-Dichloropropene	U	0.2	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	¥	0.2	1.0	5	5	0.2
71-43-2	Benzene	U	0.3	1.0	5	5	0.3
78-87-5	1,2-Dichloropropane	ซ	0.2	1.0	5	5	0.2
79-01-6	Trichloroethene	J	0.9	1.0	5	5	0.3
74-95-3	Dibromomethane	U	0.5	1.0	5	5	0.5
75-27-4	Bromodichloromethane	U	0.3	1.0	5	5	0.3
10061-01-5	cis-1,3-dichloropropene	ช	0.2	1.0	5	5	0.2
108-88-3	Toluene	ឋ	0.3	1.0	5	5	0.3
10061-02-6	trans-1,3-Dichloropropene	U	0.2	1.0	5	5	0.2
79-00-5	1,1,2-Trichloroethane	U	0.3	1.0	5	5	0.3
142-28-9	1,3-Dichloropropane	U	0.2	1.0	5	5	0.2
124-48-1	Dibromochloromethane	U	0.3	1.0	5	5	0.3
127-18-4	Tetrachloroethene	JB	0.6	1.0	5	5	0.4
106-93-4	1,2-Dibromoethane	U	0.2	1.0	5	5	0.2
108-90-7	Chlorobenzene	υ	0.2	1.0	5	5	0.2
630-20-6	1,1,1,2-Tetrachloroethane	U	0.2	1.0	5	5	0.2
100-41-4	Ethylbenzene	ซ	0.2	1.0	5	5	0.2
75-25-2	Bromoform	U	0,2	1.0	5	5	0.2
100-42-5	Styrene	u	0.2	1.0	5	5	0.2
79-34-5	1,1,2,2-Tetrachloroethane	U	0.4	1.0	5	5	0.4
96-18-4	1,2,3-Trichloropropane	U	0.2	1.0	5	5	0.2
98~82-8	Isopropylbenzene	U	0.2	1.0	5	5	0.2
108-86-1	Bromobenzene	ซ	0.2	1.0	5	5	0.2
95-49-8	2-Chlorotoluene	ซ	0.2	1.0	5	5	0.2
103-65-1	N-Propylbenzene	U	0.3	1.0	5	5	0.3
		•	2.0		-	-	***

Page 01 of 02 S5975.D

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11

Extraction Date:

Analysis Date: 09-NOV-2011 21:43
Report Date: 12/13/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-1 Client ID: MW-7 SDG: SE7341 Extracted by:

Extraction Method: SW846 5030

Analyst: DJP

Analysis Method: SW846 8260B

Lab Prep Batch: WG100773

Units: ug/l

CAS#	Compound	Flags	Results	DF.	PQL	Ađj.PQL	Adj.MDL
106-43-4	4-Chlorotoluene	σ	0.3	1.0	5	5	0.3
108-67-8	1,3,5-Trimethylbenzene	U	0.2	1.0	5	5	0.2
98-06-6	tert-Butylbenzene	U	0.3	1.0	5	5	0.3
120-82-1	1,2,4-Trichlorobenzene	U	0.4	1.0	5	- 5	0.4
135-98-8	sec-Butylbenzene	U	0.2	1.0	5	5	0.2
541-73-1	1,3-Dichlorobenzene	U	0.3	1.0	5	5	0.3
99-87-6	P-Isopropyltoluene	U	0.2	1.0	5	5	0.2
106-46-7	1,4-Dichlorobenzene	ซ	0.2	1.0	5	5	0.2
95-50-1	1,2-Dichlorobenzene	U	0.2	1.0	5	5	0.2
104-51-8	N-Butylbenzene	U	0.2	1.0	5	5	0.2
96-12-8	1,2-Dibromo-3-Chloropropane	ซ	0.5	1.0	5	5	0.5
95-63-6	1,2,4-Trimethylbenzene	บ	0.2	1.0	5	5	0.2
91-20-3	Naphthalene	U	0.3	1.0	5	5	0.3
87-68-3	Hexachlorobutadiene	U	0.5	1.0	5	5	0.5
87-61-6	1,2,3-Trichlorobenzene	ซ	0.3	1.0	5	5	0.3
1634-04-4	Methyl tert-butyl ether	J	3	1.0	5	5	0.4
67-64-1	Acetone	J	3	1.0	25	25	2
78-93-3	2-Butanone	U	1	1.0	25	25	1
108-10-1	4-methy1-2-pentanone	U	1	1.0	25	25	1
591-78-6	2-Hexanone	U	2	1.0	25	25	2
	m+p-Xylenes	U	0.6	1.0	10	10	0.6
95-47-6	o-Xylene	υ	0.2	1.0	5	5	0.2
1330-20-7	Xylenes (total)	บ	0.2	1.0	1.5	15	0.2
108-70-3	1,3,5-Trichlorobenzene	ŭ	0.2	1.0	5	5	0.2
108-05-4	Vinyl Acetate	ซ	0.4	1.0	5	5	0.4
75-15-0	Carbon Disulfide	บ	0.2	1.0	5	5	0.2
60-29-7	Diethyl Ether	J	2	1.0	5	5	0.4
109-99-9	Tetrahydrofuran	υ	. 2	1.0	25	25	2
1868-53-7	Dibromofluoromethane		101%				
17060-07-0	1,2-Dichloroethane-D4		101%				
2037-26-5	Toluene-D8		107%				
460-00-4	P-Bromofluorobenzene		*142%				

Page 02 of 02 \$5975.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11
Received Date: 11/03/11
Extraction Date: 11/04/11
Analysis Date: 23-NOV-2011 14:56

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-1 Client ID: MW-7 SDG: SE7341 Extracted by: EC

Extraction Mathod: SW846 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	POL	Add.POL
Phenol	u	9	1.0	10	9
Bis (2-Chloroethyl) ether	u	9	1.0	10	9
2-Chlorophenol	U	g	1.0	10	9
1.3-Dichlorobenzene	ซ	9	1.0	10	g
1.4-Dichlorobenzene	U	9	1.0	10	g
1,2-Dichlorobenzene	ש	9	1.0	10	9
2-Methylphenol	U	9	1.0	10	9
2,2'-0xybis(1-chloropropane)	ט	9	1.0	10	9
N-Nitroso-di-n-propylamine	ซ	9	1.0	10	9
3&4-Methylphenol	บ	9	1.0	10	9
Hexachloroethane	ט	9	1.0	10	9
Nitrobenzene	ซ	9	1.0	10	9
Isophorone	U	9	1.0	10	9
2-Nitrophenol	U	9	1.0	10	9
2,4-Dimethylphenol	ט	9	1.0	10	9
Bis (2-Chloroethoxy) methane	ש	9	1.0	10	9
2,4-Dichlorophenol	บ	9	1.0	10	9
1,2,4-Trichlorobenzene	U	9	1.0	10	9
Naphthalene	U	9	1.0	10	9
4-Chloroaniline	u	9	1.0	10	9
Hexachlorobutadiene	U	9	1.0	10	9
4-Chloro-3-Methylphenol	U	9	1.0	10	e
2-Methylnaphthalene	TJ	9	1.0	10	9
Hexachlorocyclopentadiene	υ	9	1.0	10	9
2,4,6-Trichlorophenol	T	9	1.0	10	9
2,4,5-Trichlorophenol	U	24	1.0	25	24
2-Chloronaphthalene	_ ע	9	1.0	10	9
2-Nitroaniline	U	24	1.0	25	24
Dimethyl Phthalate	די	9	1.0	10	9
2,6-Dinitrotoluene	U	9	1.0	10	9
Acenaphthylene	ช	9	1.0	10	9
3-Nitroaniline	Π.	24	1.0	25	24
Acenaphthene	ש	9	1.0	10	9
2.4-Dinitrophenol	ד	24	1.0	25	24
Dibenzofuran	ש	9	1.0	10	9
4-Nitrophenol	ש	24	1.0	25	24
2.4-Dinitrotoluene	ซ	9	1.0	10	9
Diethylphthalate	Ū	9	1.0	10	9
Fluorene	u	9	1.0	10	g
4-Chlorophenyl-phenylether	ซ	9	1.0	10	9
4-Nitroaniline	ซ	24	1.0	25	24
4,6-Dinitro-2-Methylphenol	ŭ	24	1.0	25	24
N-Nitrosodiphenylamine	Ū	9	1.0	10	9
	-	•			-

Page 01 of 02 U8762.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11
Received Date: 11/03/11
Extraction Date: 11/04/11
Analysis Date: 23-NOV-2011 14:56

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-1 Client ID: MW-7 SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.POL
4-Bromophenyl-phenylether	ช	9	1.0	10	9
Hexachlorobenzene	ซ	9	1.0	10	9
Pentachlorophenol	ช	24	1.0	25	24
Phenanthrene	ប	9	1.0	10	9
Anthracene	U	9	1.0	10	9
Carbazole	U	9	1.0	10	9
Di-n-butylphthalate	σ	9	1.0	10	9
Fluoranthene	ט	9	1.0	10	9
Pyrene	U	9	1.0	10	9
Butylbenzylphthalate	ਧ	9	1.0	10	9
Benzo (a) anthracene	U	9	1.0	10	9
3,3'-Dichlorobenzidine	U	9	1.0	10	9
Chrysene	υ	9	1.0	10	9
bis(2-Ethylhexyl)phthalate	ប	9	1.0	10	9
Di-n-octylphthalate	U	9	1.0	10	9
Benzo(b) fluoranthene	דו	9	1.0	10	9
Benzo(k) fluoranthene	ਹ	9	1.0	10	9
Benzo(a)pyrene	σ	9	1.0	10	9
Indeno(1,2,3-cd)pyrene	U	9	1.0	10	9
Dibenzo(a,h)anthracene	ប	9	1.0	10	9
Benzo(g,h,i)perylene	u	9	1.0	10	9
2-Fluorophenol		10%			
Phenol-D6		* 9%			
Nitrobenzene-D5		57%			
2-Fluorobiphenyl		64%			
2,4,6-Tribromophenol		40%			
Terphenyl-D14		86%			

Page 02 of 02 U8762.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 14-NOV-2011 13:38

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-1 Client ID: MW-7 SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: CB

Analysis Method: SWB46 8082 Lab Prep Batch: WG100447

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj, POL
Aroclor-1016	σ	0.47	1.0	0.50	0.47
Aroclor-1221	ซ	0.47	1.0	0.50	0.47
Aroclor-1232	u	0.47	1.0	0.50	0.47
Aroclor-1242	σ	0.47	1.0	0.50	0.47
Aroclor-1248	σ	0.47	1.0	0.50	0.47
Aroclor-1254	σ	0.47	1.0	0.50	0.47
Aroclor-1260	U	0.47	1.0	0.50	0.47
Tetrachloro-m-xylene		67%			
Decachlorobiphenyl		± 36%			

Page 01 of 01 7EK534.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 12-NOV-2011 00:55

Report Date: 11/15/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-1DL Client ID: MW-7 SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: AC

Analysis Method: MEDEP 4.1.25

Lab Prep Batch: WG100439

Units: ug/L

Compound

Diesel Range Organics

0-Terphenyl

Flags Results 3400

DF PQL Adj.PQL 4.0

78%

50 190

01 of 01 AEK2119.d Page

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11

Extraction Date:

Analysis Date: 08-NOV-2011 15:02

Report Date: 11/16/2011

4-Bromofluorobenzene

Matrix: WATER % Solids: NA

Lab ID: SE7341-1 Client ID: MW-7

SDG: SE7341

Extracted by: Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17

Lab Prep Batch: WG100677

Units: ug/L

Compound Gasoline Range Organics

Results

PQL Adj.FQL 10

1.0 103%

DF 1.0

10

Flags

tr

01 of 01 2EK1.0076.D Page

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 23-NOV-2011 15:42

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-2 Client ID: MW-5 SDG: SE7341 Extracted by: EC

Extraction Mathod: SW846 3510

Analyst: WAS

Analysis Method: SW846 B270C Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.PQL
Phenol	<u>"</u>	9	1.0	10	9
Bis(2-Chloroethy1)ether	U	9	1.0	10	9
2-Chlorophenol	u	9	1.0	10	9
1,3-Dichlorobenzene	ש	9	1.0	1.0	9
1,4-Dichlorobenzene	σ	9	1.0	10	9
1,2-Dichlorobenzene	υ	9	1.0	10	9
2-Methylphenol	ŭ	9	1.0	10	9
2,2'-Oxybis(1-chloropropane)	U	9	1.0	10	9
N-Nitroso-di-n-propylamine	υ	9	1.0	10	9
3&4-Methylphenol	U	9	1.0	10	9.
Hexachloroethane	σ	9	1.0	10	9
Nitrobenzene	υ	9	1.0	10	9
Isophorone	U	, 9	1.0	10	9
2-Nitrophenol	σ	9	1.0	10	9
2,4-Dimethylphenol	ช	9	1.0	10	9
Bis(2-Chloroethoxy)methane	บ	9	1.0	10	9
2,4-Dichlorophenol	Ū	9	1.0	10	9
1,2,4-Trichlorobenzene	U	9	1.0	10	9
Naphthalene	U	9	1.0	10	9
4-Chloroaniline	υ	9	1.0	10	9
Hexachlorobutadiene	ט	9	1.0	10	9
4-Chloro-3-Methylphenol	U	9	1.0	10	9
2-Methylnaphthalene	U	9	1.0	1.0	9
Hexachlorocyclopentadiene	U	9	1.0	10	9
2,4,6-Trichlorophenol	ซ	9	1.0	10	9
2,4,5-Trichlorophenol	σ	24	1.0	25	24
2-Chloronaphthalene	U	9	1.0	10	9
2-Nitroaniline	ប	24	1.0	25	24
Dimethyl Phthalate	ש	9	1.0	10	9
2,6-Dinitrotoluene	U	9	1.0	1.0	9
Acenaphthylene	ד	9	1.0	10	9
3-Nitroaniline	บ	24	1.0	25	24
Acenaphthene	σ	9	1.0	10	9
2,4-Dinitrophenol	U	24	1.0	25	24
Dibenzofuran	υ	9	1.0	10	9
4-Nitrophenol	ט	24	1.0	25	24
2,4-Dinitrotoluene	U	9	1.0	10	9
Diethylphthalate	U	9	1.0	10	9
Fluorene	U	9	1.0	10	9
4-Chloropheny1-phenylether	U	9	1.0	10	9
4-Nitroaniline	ប	24	1.0	25	24
4,6-Dinitro-2-Methylphenol	U	24	1.0	25	24
N-Nitrosodiphenylamine	U	9	1.0	10	9

Page 01 of 02 U8763.D

Katahdin Analytical Services SE7341 page 0000017 of 0000096

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 23-NOV-2011 15:42

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-2 Client ID: MW-5 SDG: SE7341 Extracted by: EC

Extraction Method: 5W846 3510

Analyst: WAS

Analysis Method: SW846 82700 Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.pon
4-Bromophenyl-phenylether	o o	9	1.0	10	9
Hexachlorobenzene	ט	9	1.0	10	9
Pentachlorophenol	ਰ	24	1.0	25	24
Phenanthrene	U	9	1.0	10	9
Anthracene	U	9	1.0	10	9
Carbazole	U	9	1.0	10	9
Di-n-butylphthalate	U	9	1.0	10	9
Fluoranthene	U	9	1.0	10	9
Pyrene	U	9	1.0	10	9
Butylbenzylphthalate	U	9	1.0	10	9
Benzo(a)anthracene	U	9	1.0	10	9
3,3'-Dichlorobenzidine	U	9	1.0	10	9
Chrysene	U	9	1.0	10	9
bis(2-Ethylhexyl)phthalate	U	9	1.0	10	9
Di-n-octylphthalate	U	9	1.0	10	9
Benzo(b)fluoranthene	U	9	1.0	10	9
Benzo(k)fluoranthene	ប	9	1.0	10	9
Benzo(a)pyrene	ប	9	1.0	10	9
Indeno(1,2,3-cd)pyrene	U	9	1.0	10	9
Dibenzo (a,h) anthracene	u	9	1.0	1.0	9
Benzo(g,h,i)perylene	ਧ	9	1.0	10	9
2-Fluorophenol		* 6%			
Phenol-D6		* 0%			
Nitrobenzene-D5		57%			
2-Fluorobiphenyl		65%			
2,4,6-Tribromophenol		* 29%			
Terpheny1-D14		101%			

Page 02 of 02 U8763.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 14-NOV-2011 14:04

Report Date: 12/01/2011

Matrix: WATER

% Solids: NA

Lab ID: SE7341-2 Client ID: MW-5 SDG: 5E7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: CB

Analysis Method: SW846 8082 Lab Frep Batch: WG100447

Units: ug/L

Compound	Flags	Resulca	DF	PQL	Adj.PQL
Aroclor-1016	ד	0.47	1.0	0.50	0.47
Aroclor-1221	u	0.47	1.0	0.50	0.47
Aroclor-1232	U	0.47	1.0	0.50	0.47
Aroclor-1242	ਧ	0.47	1.0	0.50	0.47
Aroclor-1248	Ū	0.47	1.0	0.50	0.47
Aroclor-1254	ប	0.47	1.0	0.50	0.47
Aroclor-1260	τ	0.47	1.0	0.50	0.47
Tetrachloro-m-xylene		* 5 6 %			
Decachlorobiphenyl		* 22%			

Page 01 of 01 78K535.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 09-NOV-2011 00:43

Report Date: 11/15/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-2 Client ID: MW-5 SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: AC

Analysis Method: MEDEP 4.1.25 Lab Prep Batch: WG100439

Units: ug/L

Compound Diesel Range Organics

O-Terphenyl

Flags Results DF PQL Adj.PQL 1200 1.0 50 47

59%

AEK2055.d Page 01 of 01

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11

Extraction Date:

Analysis Date: 08-NOV-2011 16:32

Report Date: 11/16/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-2 Client ID: MW-5 SDG: SE7341

Extracted by:

Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17

Lab Prep Batch: WG100677

Units: ug/L

1.0

Compound Gasoline Range Organics 4-Bromofluorobenzene

Plags Results pp υ

POL Adj.PQL 10

10 101%

10

Page

01 of 01

2EK10077.D

REPORT OF ANALYTICAL RESULTS

Client: Matt Reynolds
Drumlin Environmental, LLC

75 York St. PO Box 392

Portland, ME 04112-0342

Lab Sample ID: SE7341-002

Report Date: PO No.;

12/13/2011 11-020

Project:

EP#1120

Sample Description						Matrix	Filtered	i	Date Sample			ate elved	
MW-5						AQ	No(Tota	ıl)	11/02/20)11	11/03	/2011	
Parameter	Result	Units	Adjusted PQL	Dilution Factor	PQL	Analytical Method	Analysis Date	Ву	Prep Method	Prepped Date	Ву	QC	Notes
ANTIMONY	U 0.0013	mg/L	0.008	1	0.008	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
ARSENIC	0.076	mg/L	0.008	1	0.008	SW846 6010	11/10/11	EAM	SW848 301	0 11/10/11	NAT	BK10ICW2	
BARIUM	0.120	mg/L	0,0050	1	0.005	SW848 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10fCW2	
CADMIUM	J 0,0617	mg/L	0.0100	1	0.01	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK16lCW2	
CHROMIUM	J 0.0008	mg/L	0.0150	1	0.015	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	8K10ICW2	
COPPER	J 0.0090	mg/L	0,0260	1	0.026	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
LEAD	800,0	mg/L	0,005	1	0.005	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
MERCURY	J 0.04	ug/L.	0.20	1	0.2	SW846 7470	11/8/11	NAT	SW846 747	0 11/7/11	NAT	8K07HGW3	ļ.
NICKEL	J 0.0169	mg/L	0.0400	1	0.04	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
SELENIUM	U 0.0024	mg/L	0.010	1	0.01	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
SILVER	J 0.0004	mg/L	0,0150	1	0.015	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	
ZINC	0.672	mg/L	0,0250	1	0.025	SW846 6010	11/10/11	EAM	SW846 301	0 11/10/11	NAT	BK10ICW2	

وللدانوطة	errener.		20.00	area to view	ومندن فيند	عجم البيطندي	the Alle	residente?	দক্ষেপ যে	يقينان فالمراثق	- 3-74-±		-A-Dy one	in relative	\$T=ֈ	60 ATA	والمناورة		Street, or	تنجده	ه خنده ۲	عدلة عتب	on state of the	1 11 2 4 1 112	± .÷ a .	- 6 2	N7-16-7-	dien dan	43.53	.a. a =:.	4.3-45	
	Total Control	2.70	3.0.00	572475	54-4*T2	ad table	AS TONE	5.5. A. A.		(4.2.5) (4.3.4)	East 63	AEN:450	APPENDIX	AC COMMO	N. FXX	SAMO:	a arta	X-35.750	1.00	Same of		4-76-40	1001 3.4		200	- S N	4	C.A. C.	A CHE LAN	2.20	erga erg	ċ
																															475 37 42	Š
	100	1	23	23.5	والمتحو	100	DARWIN.	or Version	-	0.45	1	7.7	into the	Aid y	# 123	20	157 59	15.	1.500	10	And Sale	400		A	and the same		Telling Carry		1.5	22.	-	Ė
	100	*	146		300	s XX X Si	24-U	1 0	4	* ** ***		4482	else de	2.0	-		1 . L. T.	0.00	20.00	ele de		50.5	andiah	(C) (C) (C)	recus	er stad	76-34	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	***	in The	Addition	>
(e	- C	****	र देश साह	4.	3.00	oral acti	90120	de dis	/reu±nii	in in the	ar with	12.7.0	17363	******	T. Jan	3216	57 K. W		14 To	100	100	1		25.00	1	2 10 10	4	7.00	de la compa			
250	4.4.4.E.	64 G	10	流海洋	de 50	C-6-1-46	Marine Co	100 m	Sec. 14	12847	1	10	100	100	2054	27357	440	200	NUT-	44,745	818 -	100	AN EAST	4.75	17-6-65	100	a Book	15 J	* (* (* (*) *)	ক্ষ ঐ হ	100	S
29.15	T-2-1		والهجيجية	i int	- 7.4°	Marie Care	وستخباب	1.5	3000000		يرساوين			.⊞37.	77.7 1.1		ger bye.		Park.	خد دن.	1	7.724	21 F 22 F	المنطق فستور	1000	To agree a	35 F 18 3	والتع ب				į
	477		37 B	£/ 6	74	25. s	2 <i>19</i> 82	0.00	227	- 213	22.27	24	222	· 🖅 .	47	207	_ ,;;.	_F :	Fig.	178		-7-3	F4 /	77 T	₫	.v .á	87 3	77	#.T - 1	' didy	7.17	
77	.7227	<i>11.</i>		್ಕತ್	257 3	₹ JB	<i>्राच्या</i>	1 347	7.7	- Program	- 41/	7477	/ Æ	-,55	SEE .	/BF ()	7-	3-19-6	77. T	12/17	17	24/223	:F7 .	344.7	ıέ.	ini i t i	್ಕತ		i Si		- 377	-
277	21	- Jan -	ಿಕ್ಕ		/" Al	47 430	200	222	- 44E	1,772,9	502	377	527-7	1.5	- 44	127	27.2		- 22	27	-7.1	+65c	<i>=13</i>	_#F :	511 A	sii ga <u>c</u>	22	18 40	is star	2017/20		
<u>.</u>		- 10 a 200	Line	La delica d	2.54 - 2-24	10.777-03	V. 164. 3.	in the	ب. دسته ب			A. San	نسر وتنهد	∴E				ee	47.57		٠,٠,٠	zás.	37. 57	- 6 6 33-53	Ì.	# 35	T. 63.	7,322	- 1	45.	11 m	
	- 1		100	4	3500	A STATE OF	PART OF SET	£	AND SECTION	新疆		-		4	mark in	Contract of	-u-23	4	9-64-4.	-	70.00	150	3.3	900	· vicus		32	100	100		1	è
3.5Vc	5 8500	-	A. L. William	1	and was		ar share in	200	ere consu			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HI AND		السلام	1	e de la composición d La composición de la	24.		The state of the s	30	100		de trade de				TOTAL TO	T. 100	A		2
		-			- 7-	1111	45.2	7-2	7-4-5		-	3.5	7-1 27-1 			4.70	The same of	3		7			3 7000	10000	-3.5	2		2		7200	-	č

<u>2</u> <u>A</u>

÷

±

<u>.</u>

<u>#</u>

kadaris del des cerdi Res de de d'ada			is di na Andria. An di nama			
/3 / PTE		#7 A		FF / HES		i i i i i i i i i i i i i i i i i i i
					್ತಾ. ಪ್ರವರ್ಥವಾಗಿದ್ದರುತ್ತು (ಹಿನುಕ್ರ)	
					್ತಾ. ಪ್ರವರ್ಥವಾಗಿದ್ದರುತ್ತು (ಹಿನುಕ್ರ)	
					್ತಾ. ಪ್ರವರ್ಥವಾಗಿದ್ದರುತ್ತು (ಹಿನುಕ್ರ)	

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 23-NOV-2011 16:28

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-3 Client ID: MW-B SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WGl00443

Units: ug/L

Phenol U	Compound	Flags	Results	DF	POL	Adj.PQL
Bis (2-Chloroethyl) ether	-					
2-Chlorophenol U 9 1.0 10 9 1,3-Dichlorobenzene U 9 1.0 10 9 1,4-Dichlorobenzene U 9 1.0 10 9 1,2-Dichlorobenzene U 9 1.0 10 9 1,2-Dichlorobenzene U 9 1.0 10 9 2-Methylphenol U 9 1.0 10 9 3.2'-Oxybis(1-chloropropane) U 9 1.0 10 9 3.4-Methylphenol U 9 1.0 10 9 3.4-Dimethylphenol U 9 1.0 10 9 3.4-Dimethylphenol U 9 1.0 10 9 2-Nitrophenol U 9 1.0 10 9 2-Nitrophenol U 9 1.0 10 9 2-A-Dimethylphenol U 9 1.0 10 9 3.4-Dimethylphenol U 9 1.0 10 9 3.4-Trichlorophenol U 9 1.0 10 9 3.4-Trichlorobenzene U 9 1.0 10 9 4-Chloro-3-Methylphenol U 9 1.0 10 9 4-Chloronaphthalene U 9 1.0 10 9 4-Chlorophenol U 24 1.0 25 24 4-C			_			-
1,3-Dichlorobenzene U 9 1.0 10 9 1,4-Dichlorobenzene U 9 1.0 10 9 2-Methylphenol U 9 1.0 10 9 2,2'-Oxybis (1-chloropropane) U 9 1.0 10 9 3,4'-Methylphenol U 9 1.0 10 9 N-Nitroso-di-n-propylamine U 9 1.0 10 9 344-Methylphenol U 9 1.0 10 9 N-Nitroso-di-n-propylamine U 9 1.0 10 9 N-Nitroso-di-n-propylamine U 9 1.0 10 9 N-Nitroso-di-n-propylamine U 9 1.0 10 9 SA4-Methylphenol U 9 1.0 10 9 SA4-Methylphenol U 9 1.0 10 9 Sirobnore U 9 1.0 10 9 Saybhalenol U 9 1.0 10 9 Saybhalenol U 9 1.0 10 9 Saybhalene U 9 1.0 10 9		-				
1,4-Dichlorobenzene U 9 1.0 10 9 1,2-Dichlorobenzene U 9 1.0 10 9 2-Methylphenol U 9 1.0 10 9 2-Rethylphenol U 9 1.0 10 9 N-Nitroso-di-n-propylamine U 9 1.0 10 9 3&4-Methylphenol U 9 1.0 10 9 Mitrobenzene U 9 1.0 10 9 Mitrobenzene U 9 1.0 10 9 Nitrobenzene U 9 1.0 10 0 9 Nitrob		_	-			
1,2-Dichlorobenzene	•		_			
2-Methylphenol	•		_			_
2.2'-Oxyhis(1-chloropropane) U 9 1.0 10 9 N-Mitroso-di-n-propylamine U 9 1.0 10 9 3&4-Methylphenol U 9 1.0 10 9 3k4-Methylphenol U 9 1.0 10 9 Nitrobenzene U 9 1.0 10 9 Nitrobenzene U 9 1.0 10 9 Sophorone U 9 1.0 10 9 2-Mitrophenol U 9 1.0 10 9 2-Mitrophenol U 9 1.0 10 9 2-A-Dimethylphenol U 9 1.0 10 9 2.4-Dimethylphenol U 9 1.0 10 9 2.4-Dichlorophenol U 9 1.0 10 9 1.2,4-Trichlorobenzene U 9 1.0 10 9 4-Chloroaniline U 9 1.0 10 9 2.4,6-Trichlorophenol U 9 1.0 10 9 2.4,6-Trichlorophenol U 9 1.0 10 9 2.4,5-Trichlorophenol U 9 1.0 10 9 3.4-Chloroaniline U 9 1.0 10 9 3.4-Chloroaniline U 9 1.0 10 9 3.4-Chloroniline U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Dinitrotoluene U 9 1.0 10 9 3.4-Dinitrotoluene U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.4-Dinitrophenol U 9 1.0 10 9 3.4-Chlorophenol U 9 1.0 10 9 3.5-Chlorophenol U 9 1.0 10 9 3.5-Chlorophenol U 9 1.0 10 9 3.5-Chloroph	•	_				_
N-Nitroso-di-n-propylamine 344-Methylphenol 0 9 1.0 10 9 Hexachloroethane 0 9 1.0 10 9 Hexachloroethane 0 9 1.0 10 9 Nitrobenzene 0 9 1.0 10 9 Isophorone 0 9 1.0 10 9 Z-Nitrophenol 0 9 1.0 10 9 Z-A-Dimethylphenol 0 9 1.0 10 9 X-Chloroethoxy) methane 0 9 1.0 10 9 X-Chloroethoxy) methane 0 9 1.0 10 9 X-A-Trichlorobenzene 0 9 1.0 10 9 X-Chloroaniline 0 9 1.0 10 9 X-Chloroaniline 0 9 1.0 10 9 X-Chloro-3-Methylphenol 0 9 1.0 10 9 X-Methylnaphthalene 0 9 1.0 10 9 X-A-Trichlorophenol 1 9 1.0 10 9 X-A-Trichlorophenol 1 9 1.0 10 9 X-X-Trichlorophenol 1 9 1.0 10 9 X-X-Trichlorophenol 1 9 1.0 10 9 X-X-Trichlorophenol 2 0 1.0 10 9 X-X-Trichlorophenol 3 1.0 10 9 X-X-Trichlorophenol 4 1.0 25 24 X-Chloronaphthalene 4 9 1.0 10 9 X-X-Dinitrotoluene 5 1.0 10 9 X-A-Dinitrotoluene 7 9 1.0 10 9 X-A-Dinitrophenol 8 1.0 10 9 X-A-Dinitrophenol 9 1.0 10 9 X-A-Dinit			-			
384-Methylphenol		-	_			-
Hexachloroethane U		-				
Nitrobenzene U 9 1.0 10 9 Isophorone U 9 1.0 10 9 2-Nitrophenol U 9 1.0 10 9 2-A-Dimethylphenol U 9 1.0 10 9 3.4-Dimethylphenol U 9 1.0 10 9 2.4-Dichlorophenol U 9 1.0 10 9 2.4-Dichlorophenol U 9 1.0 10 9 3.4-Trichlorobenzene U 9 1.0 10 9 A-Chloroaniline U 9 1.0 10 9 4-Chloroaniline U 9 1.0 10 9 4-Chloroaniline U 9 1.0 10 9 4-Chloro-3-Methylphenol U 9 1.0 10 9 2.4.6-Trichlorophenol U 9 1.0 10 9 2.4.5-Trichlorophenol U 9 1.0 10 9 2.4.5-Trichlorophenol U 9 1.0 10 9 2Nitroaniline U 9 1.0 10 9 2-Nitroaniline U 9 1.0 10 9 3-Nitroaniline U 9 1.0 10 9 3-Nitrophenol U 24 1.0 25 24 Acenaphthylene U 9 1.0 10 9 3-Nitrophenol U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 3-Nitrophenol U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 3-Nitrophenol U 9 1.0 10 9 3-Nitrophenol U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24		-	_			
Isophorone	-,	-	_			-
2-Nitrophenol	·····	_	_			
2,4-Dimethylphenol	-	_	-			=
Bis(2-Chloroethoxy)methane U 2,4-Dichlorophenol U 3,2,4-Trichlorobenzene U 3,2,4-Trichlorobenzene U 3,4-Dichlorophenol U 3,2,4-Trichlorobenzene U 3,4-Dichlorophenol U 3,4-Chloroaniline U 3,4-Chloroaniline U 4-Chloroaniline U 4-Chloro-3-Methylphenol U 3,4-Chloro-3-Methylphenol U 3,4-Chlorophenol U 3,4-Chlorophenol U 3,4-Chlorophenol U 3,4-Chlorophenol U 3,4-Chlorophenol U 3,4-Chlorophenol U 3,4-Chloronaphthalene U 3,4-Chlorophenol U 3,4-Dinitroboluene U 3,4-Chlorophenyl-phenylether U 3,4-Chlorophenyl-phenylether U 3,4-Chlorophenyl-phenylether U 3,4-Chlorophenyl-phenylether U 4,6-Dinitro-2-Methylphenol U 3,4-Chlorophenyl-phenylether U 3,4-Chlorophenylether U 3,4-Chlo			-			-
2,4-Dichlorophenol			-			
1.2.4-Trichlorobenzene		=				
Maphthalene U 9 1.0 10 9 4-Chloroaniline U 9 1.0 10 9 Hexachlorobutadiene U 9 1.0 10 9 4-Chloro-3-Methylphenol U 9 1.0 10 9 2-Methylnaphthalene U 9 1.0 10 9 Hexachlorocyclopentadiene U 9 1.0 10 9 Leachlorocyclopentadiene U 9 1.0 10 9 Loborocyclopentadiene U 9 1.0 10 9			-			
## A-Chloroaniline	• -		_			
Hexachlorobutadiene		_	=			
4-Chloro-3-Methylphenol U 9 1.0 10 9 2-Methylnaphthalene U 9 1.0 10 9 Hexachlorocyclopentadiene U 9 1.0 10 9 2,4,6-Trichlorophenol U 9 1.0 10 9 2,4,5-Trichlorophenol U 24 1.0 25 24 2-Chloronaphthalene U 9 1.0 10 9 2-Nitroaniline U 24 1.0 25 24 Dimethyl Phthalate U 9 1.0 10 9 2,6-Dinitrotoluene U 9 1.0 10 9 3-Nitroaniline U 9 1.0 10 9 4-Chlorophenol U 9 1.0 10 9 2,4-Dinitrophenol U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24			_			
2-Methylnaphthalene		-	_			
Hexachlorocyclopentadiene	- - · · · ·		-			
2,4,6-Trichlorophenol U 9 1.0 10 9 2,4,5-Trichlorophenol U 24 1.0 25 24 2-Chloronaphthalene U 9 1.0 10 9 2-Nitroaniline U 24 1.0 25 24 Dimethyl Phthalate U 9 1.0 10 9 2,6-Dinitrotoluene U 9 1.0 10 9 Acenaphthylene U 9 1.0 10 9 3-Nitroaniline U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9		_	-			
2,4,5-Trichlorophenol U 24 1.0 25 24 2-Chloronaphthalene U 9 1.0 10 9 2-Nitroaniline U 24 1.0 25 24 Dimethyl Phthalate U 9 1.0 10 9 2,6-Dinitrotoluene U 9 1.0 10 9 Acenaphthylene U 9 1.0 10 9 3-Nitroaniline U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 </td <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td>		-	_			
2-Chloronaphthalene	· ·	-	-	-11 1		_
2-Nitroaniline		-				
Dimethyl Phthalate U 9 1.0 10 9 2,6-Dinitrotoluene U 9 1.0 10 9 Acenaphthylene U 9 1.0 10 9 3-Nitroaniline U 9 1.0 10 9 3-Nitroaniline U 9 1.0 10 9 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 24 2,4-Dinitrotoluene U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 1.0 10 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 9 1.0 10 9	-	-	_			-
2,6-Dinitrotoluene U 9 1.0 10 9 Acenaphthylene U 9 1.0 10 9 3-Nitroaniline U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24		_				
Acenaphthylene U 9 1.0 10 9 3-Nitroaniline U 24 1.0 25 24 Acenaphthene U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24	-		_			_
3-Nitroaniline		_	_			_
Acenaphthene U 9 1.0 10 9 2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 C-Chlorophenyl-phenylether U 9 1.0 25 24 C-Chlorophenyl-phenylether U 24 1.0 25 24		-	_			-
2,4-Dinitrophenol U 24 1.0 25 24 Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24		-				
Dibenzofuran U 9 1.0 10 9 4-Nitrophenol U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24	-	_	-			_
4-Nitropheno1 U 24 1.0 25 24 2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24	-	-				
2,4-Dinitrotoluene U 9 1.0 10 9 Diethylphthalate U 9 1.0 10 9 Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24		_	•			-
Diethylphthalate	-	-				
Fluorene U 9 1.0 10 9 4-Chlorophenyl-phenylether U 9 1.0 10 9 4-Nitroaniline U 24 1.0 25 24 4,6-Dinitro-2-Methylphenol U 24 1.0 25 24	•	_	-			
4-Chlorophenyl-phenylether		-	-	.,		_
4-Nitroeniline		_	=			
4,6-Dinitro-2-Methylphenol U 24 1.0 25 24	-	-	-			_
		_				
N-Nicrosogiphenylamine v 9 1.0 10 9						
	M-MICLOSOGIDueuATawrue	ប	9	1.0	10	9

Page 01 of 02 U8764.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 23-NOV-2011 16:28

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-3 Client ID: MW-B SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: WAS

Analysis Method: SW846 8270C Lab Prep Batch: WG100443

Units: ug/L

Compound	Flags	Results	DF	PQL	Adj.PQL
4-Bromophenyl-phenylether	υ	9	1.0	10	9
Hexachlorobenzene	ซ	9	1.0	10	9
Pentachlorophenol	ប	24	1.0	25	24
Phenanthrene	σ	9	1.0	10	9
Anthracene	σ	9	1.0	10	9
Carbazole	Ū	9	1.0	10	9
Di-n-butylphthalate	ช	9	1.0	10	9
Fluoranthene	ប	9	1.0	10	9
Pyrene	ช	9	1.0	10	9
Butylbenzylphthalate	σ	9	1,0	10	9
Benzo (a) anthracene	ប	9	1.0	10	9
3,3'-Dichlorobenzidine	Ū	9	1.0	10	9
Chrysene	Œ	9	1.0	10	9
bis(2-Ethylhexyl)phthalate	u	9	1.0	10	9
Di-n-octylphthalate	U	9	1.0	10	9
Benzo(b) fluoranthene	ប	9	1.0	10	9
Benzo(k) fluoranthene	U	9	1.0	10	9
Henzo (a) pyrene	U	9	1.0	10	9
Indeno(1,2,3-cd)pyrene	U	9	1.0	10	9
Dibenzo(a,h)anthracene	σ	9	1.0	10	9
Benzo(g,h,i)perylene	σ	9	1.0	10	9
2-Fluorophenol		11%			
Phenol-D6		* 6%			
Nitrobenzene-D5		42%			
2-Fluorobiphenyl		53%			
2,4,6-Tribromophenol		45%			
Terphenyl-D14		43%			

Page 02 of 02 U8764.D

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 14-NOV-2011 14:30

Report Date: 12/01/2011

Matrix: WATER % Solids: NA Lab ID: SE7341-3 Client ID: MW-B SDG: SE7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: CB

Analysis Method: SW846 8082 Lab Prep Batch: WG100447

Units: ug/L

Compound	Plags	Results	DF	PQL	Adj.PQL
Aroclor-1016	σ	0.47	1.0	0.50	0.47
Aroclor-1221	U	0.47	1.0	0.50	0.47
Aroclor-1232	υ	0.47	1.0	0.50	0.47
Aroclor-1242	σ	0.47	1.0	0.50	0.47
Aroclor-1248	υ	0.47	1.0	0.50	0.47
Aroclor-1254	υ	0.47	1.0	0.50	0.47
Aroclor-1260	ซ	0.47	1.0	0.50	0.47
Tetrachloro-m-xylene		76%			
Decachlorobiphenyl		57%			

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date: 11/04/11 Analysis Date: 09-NOV-2011 01:20

Report Date: 11/15/2011

Matrix: WATER % Solids: NA

Lab ID: SE7341-3 Client ID: MW-B SDG: 9E7341 Extracted by: EC

Extraction Method: SW846 3510

Analyst: AC

Analysis Method: MEDEP 4.1.25 Lab Prep Batch: WG100439

Units: ug/L

Compound

Diesel Range Organics

O-Terphenyl

Flags Results

370 60%

DF PQL Adj.PQL 1.0 50 47

Page 01 of 01 AEK2056.d

Client: Drumlin Environment

Project: EP#1120

PO No:

Sample Date: 11/02/11 Received Date: 11/03/11 Extraction Date:

4-Bromofluorobenzene

Analysis Date: 08-NOV-2011 17:25

Report Date: 11/16/2011 Matrix: WATER

% Solids: NA

Lab ID: SE7341-3 Client ID: MW-B SDG: SE7341

Extracted by:

Extraction Method: SW846 5030B

Analyst: EKC

Analysis Method: MEDEP 4.2.17

Lab Prep Batch: WG100677

Units: ug/L

DF

1.0

Compound Gasoline Range Organics

Flags Results 1.0

PQL Adj.PQL 10

10

104%

01 of 01 Page

Ū

2EK10078.D

