

Rising Tide Brewing - Expansion STRUCTURAL WOOD FRAMING In-Grade Base Values have been used for design. 130 Fox Street 2x framing shall be Spruce-Pine-Fir S4S No. 2 and better unless noted. Portland, Maine All lumber shall be 19% maximum moisture content, unless noted. SI Job#: 17-0113 Solid timber beams and posts shall be Douglas Fir-Larch No. 1. **DESIGN LIVE LOADS:** 2009 IBC/MUEBC, U.O.N. Existing roof purlins have been analyzed using assumed allowable Fb = 1580 psi and E = 1,600,000 psi, similar to Douglas Fir Select 60 psf(Pg)Snow Structural, based on findings in limited areas of the roof framing. Existing roof framing throughout the structure should be verified Wind 100 mph, exp B, 3 second gust in the field as typical of the assumed conditions. Notify S.I. if conditions other than the indicated assumptions exist. Rooftop Deck/ Assembly 100 psf Studs shall be Spruce-Pine-Fir S4S No. 2 and better. Office 50 psf Top and bottom plates shall be Spruce-Pine-Fir S4S No. 2 and better. 100 psf Stairs Wood in contact with concrete shall be pressure-treated Spruce-Pine-Fir S4S No. 2 or Southern Yellow Pine. Conventional light framing shall comply with IBC Section 2308. **STRUCTURAL STEEL:** Except as noted otherwise, minimum nailing shall be provided as specified in IBC Table 2304.9.1 "Fastening Schedule." ASTM A992 Structural Beams: Plywood and oriented strand board (OSB) floor and roof sheathing shall be APA graded with panel identification index, thickness, and Angles, misc: ASTM A36 nailing as noted on the drawings. ASTM A307 or A36. Anchor Bolts: Nail (or screw to light gauge structural steel framing) wall sheathing with 8d commons (or #10 tek screws to light gauge structural Expansion Anchors shall be ICC-ES approved, installed in accordance with manufacturers specifications. steel framing) at 4" o.c. at panel edges, and 12" o.c. at intermediate framing except as noted. Wedge Type In concrete: SHEATH ALL EXTERIOR WALLS. SHEATH INTERIOR WALLS AS SHOWN ON THE DRAWINGS. In solid masonry: Sleeve Type BLOCK AND NAIL/SCREW ALL EDGES BETWEEN STUDS. Sheathing shall be continuous from bottom plate to top plate. Cut in "L" and "T" shapes around openings. Lap sheathing over rim Non-shrink grout beneath column base and beam bearing plates shall be non-metallic with minimum compressive joists min. 4" at all floors to tie upper and lower stud walls together. strength 5000psi. Minimum height of sheathing panels shall be 16" to assure that plates are tied to studs. All structural steel shall be fabricated and erected per the current edition of AISC Steel Construction Manual. Minimum 3-8d per stud and nail plates with "edge nail" spacing. Welding by qualified welders. E70XX electrodes. 3/16" fillet welds, unless noted otherwise. Sole plate at all perimeter walls and at designated shear walls shall be nailed as for braced panels with 3-16d x 3 1/2" long box nails Except as noted, framed beam connections shall be detailed to develop 0.6 x Allowable Uniform Load values (coated or deformed shank) per 16". 12d nails are not acceptable. tabulated in the 9th Edition AISC Manual, Pp. 2-27 and following. Provide solid blocking between joists under jamb studs of openings. All beams shall have full depth web stiffeners each side of webs above and below columns. (3" or as noted) Pre-engineered, prefabricated trusses shall be designed for the fabricator by a Professional Engineer Registered in the State of Attach wood nailer plates to beams with 1/2" diameter machine or carriage bolts at maximum 16" o.c., or 3/8" construction, and shall comply with Code Requirements. diameter bolts at 16" with glued contact face, or 5/32" diameter powder actuated drive pins at 12" o.c., U.O.N. Truss to truss connections specified shall be by truss supplier, unless specifically noted on the drawings. Lower chord of gable end trusses shall be anchored to wall plate with framing anchors at 4'-0 spacing and laterally braced to roof framing at 8'-0 spacing. Expansion anchors shall be approved "wedge" type unless specifically noted to be "sleeve" type. Chemical anchors shall be approved epoxy or similar adhesive type and shall have current ICC Evaluation Report. Where base Truss supplier shall specify all floor and roof truss bracing and bridging. All roof rafters, joists, trusses, and beams shall be anchored to supports with metal framing anchors. material is not solid, approved screen tubes shall be used. Light gage framing anchors shown or required, shall be Simpson "Strong Tie" and installed with the number and type of nails Grout beneath column base and beam-bearing plates shall be recommended by the manufacturer to develop the rated capacity. minimum 28-day compressive strength of 7,500 psi, Note that heavy-duty hangers and skewed hangers may not be stocked locally and require special order from the factory. approved pre-bagged, non-metallic, non-gaseous, bleed free, All beams and trusses shall be braced against rotation at points of bearing. non-shrink, when tested in accordance with ASTM C1107 Unless otherwise indicated, install two lengths of solid blocking x joist depth x 12 inches long in floor framing under column loads. Grade B or C at a flow cone fluid consistency of 20 to 30 seconds Columns must have a continuous load path to foundation. Lead holes for lag screws shall be drilled in accordance with Table 6.23 of the AITC Timber Construction Manual, 3rd edition. LIGHT GAUGE STRUCTURAL STEEL FRAMING: Member forming shall conform to AISI Cold-Formed Steel Specifications. FIELD VERIFICATION OF EXISTING CONDITIONS: All structural framing (studs, joists, track, runners, bracing, and bridging) shall be galvanized sheet steel conforming to ASTM A525, Contractor shall thoroughly inspect and survey existing structure to verify conditions that affect the work shown on the drawings. G-60. Contractor shall report any variations or discrepancies to the Architect before proceeding. Studs and joists 54 mils (16 gauge) and heavier shall be 50 ksi yield. 43 mils (18 gauge) and lighter shall be 33 ksi yield, unless noted otherwise on plan. STRUCTURAL ERECTION AND BRACING REQUIREMENTS: Subcontractor shall provide bridging and blocking at a maximum of 6 foot spacing or as required for stability and stiffness of the final The structural drawings illustrate the completed structure with elements in their final positions, properly supported and braced. assembly wherever sheathing does not provide adequate bracing. These construction documents contain typical and representative details to assist the contractor. Supplier shall design required jambs, lintels and headers at openings where not specifically detailed. Details shown apply at all similar conditions unless otherwise indicated. Member sizes noted on drawings are in the new SSMA standard nomenclature: Although due diligence has been applied to make the drawings as complete as possible, not every detail is illustrated, nor is every (##d)(sd)(##w)-(##t)exceptional condition addressed. (##d) Member Depth (inches.hundredths) All proprietary connections shall be installed in accordance with the manufacturers' recommendations. (sd) Style Designation (see Style Designation in table below) All work shall be accomplished in a workmanlike manner and in accordance with the applicable code and local ordinances. (##w) Flange Width (inches.hundredths) The general contractor is responsible for coordination of all work, including layout and dimension verification, materials coordination, (##t) Material Thickness (mils) (see Mils vs equivalent Gauge in table below) shop drawing review, and the work of subcontractors. Member Type (##t) Mils Thickness | Equivalent Gauge (sd) Style Designation Any discrepancies or omissions discovered in the course of the work shall be immediately reported to the architect for resolution. Punched C-Section 18 Continuation of work without notification of discrepancies relieves the architect and engineer from all consequences. Unpunched C-Section 27 22 Unless otherwise specifically indicated, the drawings do not describe methods of construction. 20 – Drywall Track 30 The contractor, in the proper sequence, shall perform or supervise all work necessary to achieve the final completed structure, and to 20 -Structural Channel protect the structure, workmen, and others during construction. Furring Channel 43 18 Such work shall include, but not be limited to, bracing, shoring for construction equipment, shoring for excavation, formwork, scaffolding, safety devices and programs of all kinds, support and bracing for cranes and other erection equipment. 54 16 Do not backfill against basement or retaining walls until supporting slabs and floor framing are in place and securely anchored, unless 68 14 adequate bracing is provided. 97 12 Temporary bracing shall remain in place until all floors, walls, roofs and any other supporting elements are in place. The architect and engineer bear no responsibility for the above items, and observation visits to the site do not in any way include STRUCTURAL MASONRY inspection of them. Design is based on Unit Strength Method MSJC, Section SC-1.4 B.2. Compressive strength of masonry assembly used for design is 1500 psi, based on net-bedded area. Hollow load-bearing concrete masonry (CMU) shall be medium-weight units conforming to ASTM C90, Grade N1, minimum compressive strength 1,900 psi based on average net area. Mortar shall be Type S conforming to ASTM C270. Masonry cement shall not be used. Provide full shoved mortar in all head and bed joints. Admixtures shall not be added for any reason unless approved by the Architect. Except for lintels, bond beam units shall be produced from standard vertically voided units with pre-cut knockout cross walls. Grout used in masonry walls and block cells shall be: coarse grout, as defined by ASTM C476, with a minimum cube strength = 2,000 psi. 3000 psi concrete using 3/8" diameter aggregate. placed by vibrating unless an approved self consolidating mix is used Lifts shall not exceed five feet in height If grout pour height exceeds 5 feet, clean-out holes shall be provided. Space continuous horizontal joint reinforcing at 16" maximum in all CMU walls. Joint reinforcing shall be welded type with 9 gage side-wires and 9 gage trussed or ladder cross wires. Reinforcing bars shall be as for reinforced concrete except as noted. ____ At splices, lap bars 48 diameters. Provide reinforced grouted vertical cells at corners, ends of walls, jambs of openings, each side of vertical control joints, and at spacing shown on drawings. GALV STEEL LINTEL Reinforcement shall be secured against displacement prior to grouting -BOND BEAM REINF by wire bar locators or other suitable devices at intervals not exceeding 200 bar diameters or 10 feet. Where noted on the drawings, LINTEL BEARING SEE SCHEDULE provide clearance between masonry and structural elements, or wrap steel with polyethylene film. -JAMB REINFORCING Provide vertical control joints in all masonry walls as located on architectural drawings or -SEE SCHEDULE FOR at 25'-0 maximum spacing. JAMB REQ'MTS at both jambs of openings wider than six feet. Submit for review TYPICAL LOOSE LINTEL INSTALLATION Certificates for materials used in masonry construction indicating compliance with the contract documents Special Inspection is required by design. See Special Inspection Notes. NO SCALE MSJC Level 2 Quality Assurance, MSJC Table 1.14.2 Prism and grout tests will be required prior to the start of masonry work shall consist of five (5) masonry prisms. OI Test specimens shall be made by the masons, at the direction of the owner's representative, with materials and techniques currently being used in the wall. LF Specimens shall be protected and field cured for 48 hours before being transported to a testing agency. The testing agent will be hired by the owner and shall be responsible for laboratory care and curing of specimens, testing, and reporting results to the owner, contractor, architect, and engineer in accordance with ASTM E447-92 * Minimum lintel except as noted, one angle for each 4" of wall thickness to bear 4" each end LOOSE LINTELS: Unless noted otherwise, provide galvanized loose lintels per general notes detail.

SINGLE-PLATE SHEAR CONNECTION SCHEDULE				
BM. SIZE	# OF 3/4"Ø BOLTS L (in.) CONN CAP. (kij			
W8, W10	2	6	16.3	
W12, W14	3	9	25.6	
W16	4	12	34.8	
W18	5	15	43.5	
W21	6	18	51.6	
W24	7	21	59.7	
*ALL BOLTS TO BE ASTM A325 -TYP UNO <u>TYPICAL SINGLE PLATE SHEAR CONNECTION</u> (PROVIDE SIMILAR BOLTING AT BEAM-TO-BEAM CONNECTION)				

PENING SIZE	LINTEL SIZE	GROUTED JAMB
		WIDTH
ESS THAN 4'-0	L 4" x 3-1/2" x 3/8" LLV	8"
4'-1" TO 5'-4"	L 5" x 3-1/2" x 1/4" LLV	8"
5'-5" TO 6'-6"	L 6" x 3-1/2" x 5/16" LLV	1'-4"

			ABBREVIA	11	ION	5 KEY		
AB	Anchor Rod (Bolt)	EF	Each Face	N	АСН	Machine	SC	Slip Critica
ADDL	Additional	EJ	Expansion Joint	N	MASY	Masonry	SCH	Schedule
ADJ	Adjustable	ELEV	Elevation	N	MATL	Material	SDST	Self Drilling
AFF	Above Finished Floor	ELEC	Electric (Electrical)	Ν	MAX	Maximum	SECT	Section
ALT	Alternate	ENGR	Engineer	Ν	ИB	Machine bolt	SF	Square Fee
AMT	Amount	EQ	Equal	N	MECH	Mechanical	SHT	Sheet
ANCH	Anchor, Anchorage	EQUIP	Equipment	Ν	MEZZ	Mezzanine	SHTG	Sheathing
APPROX	Approximate	EQUIV	Equivalent	N	AFR	Manufacture, -er, -ed	SIM	Similar
ARCH	Architect, -ural	ES	Each Side	Ν	MIN	Minimum	SLH	Short Leg l
ATR	All Thread Rod	EST	Estimate	N	ЛL	Microllam	SLV	Short Leg V
AVG	Average	E-W	East to West			(Trus-joist brand LVL)	SOG	Slab on Gr
BC	Bottom of Concrete	EXC	Excavate	Ν	мO	Masonry Opening	SP	Spaces
BL	Brick Ledge	EXP	Expansion	Ν	MTL	Metal	SPEC	Specificatio
BLK	Block	EXT	Exterior	1	NF	Near Face	SQ	Square
BLKG	Blocking	FND	Foundation	1	NIC	Not In Contract	ST	Snug Tight
BM	Beam	FF	Far Face, Finished Floor	1	NS	Near Side	STD	Standard
BOT	Bottom	F-F	Face to Face	1	N-S	North to South	STIFF	Stiffener
BRG	Bearing	FIG	Figure	1	NTS	Not to Scale	STL	Steel
BW	Bottom of Wall	FL	Flush		ЭСJ	OSHA Column Joist	STRUCT	Structure, -
CB	Counterbore	FLG	Flange		OD	Outside Diameter	SUPT	Support
CF	Cubic Foot	FLR	Floor		OF	Outside Face	SY	Square Yar
CG	Center of Gravity	FO	Face of		HC	Opposite Hand	SYM	Symmetrica
CIP	Cast in Place	FP	Full Penetration		OPNG	Opening	T&B	Top and B
CJ	Construction Joint	FS	Far Side		OPP	Opposite	T&G	Tongue and
	(Control Joint)	FTG	Footing		OSB	Oriented Strand Board	ТВ	Top of Bea
CLG	Ceiling	GA	Gage (Gauge)	F	PAF	Powder Actuated Fast'nr	ТС	Top of Cor
CLR	Clear	GALV	Galvanized	F	PC	Precast	TD	Top of De
СМ	Construction Manager	GC	General Contractor	F	PCF	Pounds Per Cubic Foot	THD	Thread
	(Management)	GEN	General	F	PEN	Penetration	THK	Thick, -nes
CMU	Concrete Masonry Unit	GL	Glue laminated (Glulam)	F	PERP	Perpendicular	TJ	Top of Jois
COL	Column	GND	Ground	F	PL	Property Line	TL	Total Load
COM	Common	GR	Grade	F	PLF	Pounds per Linear Foot	TPG	Topping
COMB	Combination	GT	Girder Truss	F	PNL	Panel	TRANS	Transverse
CONC	Concrete	GYP BD	Gypsum Board	F	эр	Panel Point	TW	Top of Wa
CONN	Connection	HAS	Headed Anchor Stud	F	PS	Prestressed	TYP	Typical
CONT	Continue (Continuous)	HORIZ	Horizontal	F	PSF	Pounds per Square Foot	ULT	Ultimate
COORD	Coordinate, -tion	ΗT	Height	F	PSI	Pounds per Square Inch	UNO	Unless Not
CS	Countersink	ID	Inside Diameter	F	PSL	Parallel Strand Lumber	VERT	Vertical
CTR	Center	IF	Inside Face			(generic term)	VIF	Verify in Fi
CY	Cubic Yard	INT	Interior (Intermediate)	F	РТ (1)	Post Tensioned	WA	Wedge And
DAB	Deformed Anchor Bar	JB	Joist Bearing	F	PT (2)	Pressure Treated	WP	Work Poin
DET	Detail	JST	Joist	F	PTN	Partition	WT	Weight
DEV	Develop	JT	Joint	F	PWD	Plywood	WWF	Welded Wi
DIAG	Diagonal	К	Kip (1,000 lbs.)		QTY	Quantity	XS	Extra Stron
DIM	Dimension	LD	Load	F	R	Radius	XSECT	Cross-secti
DL	Dead Load	LL	Live Load	F	RE	Reference (refer to)	XXS	Double Ex
DN	Down	LLH	Long Leg Horizontal	F	RECT	Rectangle		
DP	Drilled Pier	LLV	Long Leg Vertical	F	REINF	Reinforce, -ed, -ing	(E)	Existing
DT	Double Tee	LOC	Location	F	REQ	Required	(N)	New
DWG	Drawing	LSL	Laminated Strand	R	REQMT	Requirement	(R)	Remove
DWL	Dowel		Lumber (generic term)	R	RET	Retaining		
EA	Each	LT	Light	R	RM	Room		
ECC	Eccentric	LVL	Laminated Veneer		RMO	Rough Masonry Opening		
E-E	End to End	1	Lumber (generic term)	R	RO	Rough Opening		

SC	Slip Critical
SCH	Schedule
SDST	Self Drilling Self Tapping
SECT	Section
SF	Square Feet
SHT	Sheet
SHTG	Sheathing
SIM	Similar
SLH	Short Leg Horizontal
SLV	Short Leg Vertical
SOG	Slab on Grade
SP	Spaces
SPEC	Specifications
SQ	Square
ST	Snug Tight
STD	Standard
STIFF	Stiffener
STL	Steel
	Structure, -al
SUPT	Support
SY	Square Yard
SYM	Symmetrical
T&B	Top and Bottom
T&G	Tongue and Groove
ТВ	Top of Beam
ТС	Top of Concrete
TD	Top of Deck
THD	Thread
THK	Thick, -ness
TJ	Top of Joist
TL	Total Load
TPG	Topping
TRANS	Transverse
TW	Top of Wall
TYP	Typical
ULT	Ultimate
UNO	Unless Noted Otherwise
VERT	Vertical
VIF	Verify in Field
WA	Wedge Anchor
WP	Work Point
WΤ	Weight
WWF	Welded Wire Fabric
XS	Extra Strong
XSECT	Cross-section
XXS	Double Extra Strong
(E)	Existing
(L) (N)	New
(R)	Remove
	1

Struc	tural Drawing Index
S1.0	General Notes, Etc.

S1.0	General Notes, Etc.
S1.1	Mezzanine Framing Plan
S1.2	Roof Framing Plan
S2.1	Details

FOR PERMIT

BUILD WITH CONFIDENCE © 2017 Structural Integrity Consulting Engineers, Inc.

SI # 17-0113