019-A-001-001 1-1 India St, Portland, MR The Longfellow at Ocan Gateway Riverwalk, LLC

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 28 10/30/2006

Reach S1: (new node)

Inflow Area =

1.485 ac, Inflow Depth > 4.15" for 10-Year Storm event

Inflow

7.37 cfs @ 12.04 hrs, Volume=

0.513 af

Outflow

7.37 cfs @ 12.04 hrs, Volume=

0.513 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach S1: (new node)

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 27 10/30/2006

Reach FR: Fore River

Inflow Area =

1.446 ac, Inflow Depth > 4.10" for 10-Year Storm event

Inflow

6.59 cfs @ 12.07 hrs, Volume=

0.494 af

Outflow

6.59 cfs @ 12.07 hrs, Volume=

0.494 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach FR: Fore River

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

10/30/2006

Page 26

Reach CS: Combined Sewer

Inflow Area =

1.664 ac, Inflow Depth > 4.12" for 10-Year Storm event

Inflow

8.20 cfs @ 12.04 hrs, Volume=

0.571 af

Outflow

8.20 cfs @ 12.04 hrs, Volume=

0.571 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach CS: Combined Sewer

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

10/30/2006

Page 25

Subcatchment 5X: Ocean Gateway Gravel Lot

Runoff

-

4.60 cfs @ 12.08 hrs, Volume=

0.351 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

Α	rea (sf)	CN I	Description						
11-111-00000	675	98	Buildings		· · · · · · · · · · · · · · · · · · ·				
	1,415	98 I	⊃aved						
	41,460	98 (Gravel Parking						
	695	68 -	<50% Gras	s cover, Po	or, HSG A				
· ·	44,245	98 \	Weighted A	verage					
	695		Pervious Ar	ea					
•	43,550		mpervious	Area					
Tc	Length	Slope	•	Capacity	Description				
(min)	(feet)	(ft/ft)		(cfs)					
2.9	15	0.0100	0.09		Sheet Flow, BC				
					Grass: Short n= 0.150 P2= 3.00"				
1.4	85	0.0100	0.98		Sheet Flow, CD				
					Smooth surfaces n= 0.011 P2= 3.00"				
1.2	150	0.0171	2.11		Shallow Concentrated Flow, DE				
					Unpaved Kv= 16.1 fps				
5.5	250	Total							

Subcatchment 5X: Ocean Gateway Gravel Lot

Page 24 10/30/2006

Subcatchment 4X: Turner Barker Gravel Lot

Runoff

2.02 cfs @ 12.06 hrs, Volume=

0.143 af, Depth> 3.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

_	Α	rea (sf)	CN I	Description					
		1,030	98	Buildings					
		285	98	Paved					
		16,130	98	Gravel Park	king				
		1,300	68	<50% Grass cover, Poor, HSG A					
		18,745	96	Weighted A	verage				
		1,300		Pervious Ar	ea				
		17,445		Impervious	Area				
	Тс	Length	Slope	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.2	15	0.0200	0.11		Sheet Flow, AB			
						Grass: Short n= 0.150 P2= 3.00"			
	1.1	85	0.0200	1.29		Sheet Flow, BC			
						Smooth surfaces n= 0.011 P2= 3.00"			
	0.9	110	0.0150	1.97		Shallow Concentrated Flow, CD			
						Unpaved Kv= 16.1 fps			
	4.2	210	Total						

Subcatchment 4X: Turner Barker Gravel Lot

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 23 10/30/2006

Subcatchment 3X: Turner Barker

Runoff

-

0.85 cfs @ 12.05 hrs, Volume=

0.058 af, Depth> 3.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

А	rea (sf)	CN [Description							
	4,000	98 E	Building							
	2,980		Gravel Park	king						
	830				oor, HSG A					
	7,810	95 V	Veighted A	verage						
	830	. F	Pervious Ar	·ea						
	6,980	I	mpervious	Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
2.2	15	0.0200	0.11		Sheet Flow, AB					
					Grass: Short n= 0.150 P2= 3.00"					
1.1	85	0.0200	1.29	•	Sheet Flow, BC					
					Smooth surfaces n= 0.011 P2= 3.00"					
0.3	40	0.0200	2.28		Shallow-Concentrated Flow, CD					
				William to the second s	Unpaved Kv= 16.1 fps					
3.6	140	Total			,					

Subcatchment 3X: Turner Barker

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 2X: Breakaway

Runoff

= 0.81 cfs

0.81 cfs @ 12.01 hrs, Volume=

0.054 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

	Aı	rea (sf)	CN I	Description					
		5,870	98	Building					
-		950	98	Gravel Park	king				
		6,820	98	Neighted A	verage				
		6,820		mpervious	Area				
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.9	65	0.0200	1.22		Sheet Flow, AB			
						Smooth surfaces	n= 0.011	P2= 3.00"	

Subcatchment 2X: Breakaway

Page 21 10/30/2006

Subcatchment 1X: Shipyard Gravel Lot

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 20 10/30/2006

Subcatchment 1X: Shipyard Gravel Lot

Runoff

-

6.63 cfs @ 12.04 hrs, Volume=

0.459 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

	Ar	ea (sf)	CN D	escription		
	2,635 98 Building					
		29,940	98 G	ravel Park	king	
		25,280	98 P	aved	Ü	
		57,855	98 V	Veighted A	verage	
		57,855		npervious	•	
		,			•	
7	Гс	Length	Slope	Velocity	Capacity	Description
(mi		(feet)	(ft/ft)	(ft/sec)	(cfs)	
	.7	60	0.0333	1.47		Sheet Flow, AB
Ū	••		0.0000			Smooth surfaces n= 0.011 P2= 3.00"
0	.3	40	0.1000	2.11		Sheet Flow, BC
			000			Smooth surfaces n= 0.011 P2= 3.00"
0	.2	40	0.0500	3.60		Shallow Concentrated Flow, CD
						Unpaved Kv= 16.1 fps
0	.9	90	0.0111	1.70		Shallow Concentrated Flow, DE
						Unpaved Kv= 16.1 fps
0	.2	40	0.0625	4.03		Shallow Concentrated Flow, EF
						Unpaved Kv= 16.1 fps
0	.1	32	0.0100	5.90	4.63	Circular Channel (pipe), FG
						Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.010
2	.4	302	Total			

Type III 24-hr 10-Year Storm Rainfall=4.70"

Prepared by Woodard & Curran

Page 19

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

10/30/2006

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1X: Shipyard Gravel Lot

Runoff Area=57,855 sf Runoff Depth>4.15"

Flow Length=302' Tc=2.4 min CN=98 Runoff=6.63 cfs 0.459 af

Subcatchment 2X: Breakaway

Runoff Area=6,820 sf Runoff Depth>4.15"

Flow Length=65' Slope=0.0200 '/' Tc=0.9 min CN=98 Runoff=0.81 cfs 0.054 af

Subcatchment 3X: Turner Barker

Runoff Area=7,810 sf Runoff Depth>3.89"

Flow Length=140' Slope=0.0200 '/' Tc=3.6 min CN=95 Runoff=0.85 cfs 0.058 af

Subcatchment 4X: Turner Barker Gravel Lot

Runoff Area=18,745 sf Runoff Depth>3.98"

Flow Length=210' Tc=4.2 min CN=96 Runoff=2.02 cfs 0.143 af

Subcatchment 5X: Ocean Gateway Gravel Lot

Runoff Area=44,245 sf Runoff Depth>4,15"

Flow Length=250' Tc=5.5 min CN=98 Runoff=4.60 cfs 0.351 af

Reach CS: Combined Sewer

Inflow=8.20 cfs 0.571 af

Outflow=8.20 cfs 0.571 af

Reach FR: Fore River

Inflow=6.59 cfs 0.494 af

Outflow=6.59 cfs 0.494 af

Reach S1: (new node)

Inflow=7.37 cfs 0.513 af

Outflow=7.37 cfs 0.513 af

Reach S2: (new node)

Inflow=0.85 cfs 0.058 af Outflow=0.85 cfs 0.058 af

Reach TOT: (new node)

Inflow=14.53 cfs 1.065 af

Outflow=14.53 cfs 1.065 af

Pond D2: Commercial Street Storm System

Peak Elev=9.68' Inflow=2.02 cfs 0.143 af

15.0" x 192.0' Culvert Outflow=2.02 cfs 0.143 af

Pond D3: Commercial

Peak Elev=9.27' Inflow=2.02 cfs 0.143 af

15.0" x 192.0' Culvert Outflow=2.02 cfs 0.143 af

Pond D7: Hancock

Peak Elev=9.21' Inflow=4.60 cfs 0.351 af

30.0" x 36.0' Culvert Outflow=4.60 cfs 0.351 af

Pond D8: Hancock Street Storm System

Peak Elev=10.70' Inflow=4.60 cfs 0.351 af

24.0" x 196.0' Culvert Outflow=4.60 cfs 0.351 af

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 18 10/30/2006

Pond D8: Hancock Street Storm System

Inflow Area = 1.016 ac, Inflow Depth > 2.59" for 2-Year Storm event

Inflow = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af

Outflow = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af, Atten= 0%, Lag= 0.0 min

Primary = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 10.50' @ 12.08 hrs

Flood Elev= 15.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	9.78'	24.0" x 196.0' long Culvert Ke= 0.500
			Outlet Invert= 8.18' S= 0.0082 '/' Cc= 0.900 n= 0.011

Primary OutFlow Max=2.82 cfs @ 12.08 hrs HW=10.48' TW=8.96' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.82 cfs @ 2.86 fps)

Pond D8: Hancock Street Storm System

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 17 10/30/2006

Pond D7: Hancock

Inflow Area = 1.016 ac, Inflow Depth > 2.59" for 2-Year Storm event

Inflow = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af

Outflow = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af, Atten= 0%, Lag= 0.0 min

Primary = 2.91 cfs @ 12.08 hrs, Volume= 0.219 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 8.98' @ 12.08 hrs

Flood Elev= 13.91

Primary OutFlow Max=2.82 cfs @ 12.08 hrs HW=8.96' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 2.82 cfs @ 2.70 fps)

Pond D7: Hancock

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 16 10/30/2006

Pond D3: Commercial

0.430 ac, Inflow Depth > 2.41" for 2-Year Storm event Inflow Area =

Inflow 1.25 cfs @ 12.06 hrs, Volume= 0.086 af

1.25 cfs @ 12.06 hrs, Volume= 1.25 cfs @ 12.06 hrs, Volume= 0.086 af, Atten= 0%, Lag= 0.0 min Outflow

Primary 0.086 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 9.05' @ 12.06 hrs

Flood Elev= 13.91'

Device	Routing	Invert	Outlet Devices
#1	Primary	8.35'	15.0" x 192.0' long Culvert Ke= 0.500
	•		Outlet Invert= 8.06' S= 0.0015 '/' Cc= 0.900 n= 0.010

Primary OutFlow Max=1.22 cfs @ 12.06 hrs HW=9.04' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.22 cfs @ 2.53 fps)

Pond D3: Commercial

Prepared by Woodard & Curran

Page 15

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

10/30/2006

Pond D2: Commercial Street Storm System

Inflow Area = 0.430 ac, Inflow Depth > 2.41" for 2-Year Storm event

Inflow = 1.25 cfs @ 12.06 hrs, Volume= 0.086 af

Outflow = 1.25 cfs @ 12.06 hrs, Volume= 0.086 af, Atten= 0%, Lag= 0.0 min

Primary = 1.25 cfs @ 12.06 hrs, Volume= 0.086 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 9.45' @ 12.07 hrs

Flood Elev= 14.95

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 8.74'
 15.0" x 192.0' long Culvert Ke= 0.500

 Outlet Invert= 8.45'
 S= 0.0015 '/' Cc= 0.900 n= 0.010

Primary OutFlow Max=1.15 cfs @ 12.06 hrs HW=9.44' TW=9.04' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.15 cfs @ 2.35 fps)

Pond D2: Commercial Street Storm System

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 14 10/30/2006

Reach TOT: (new node)

Inflow Area =

3.110 ac, Inflow Depth > 2.55" for 2-Year Storm event

Inflow Outflow

9.15 cfs @ 12.05 hrs, Volume= 9.15 cfs @ 12.05 hrs, Volume= 0.661 af

0.661 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach TOT: (new node)

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 13 10/30/2006

Reach S2: (new node)

Inflow Area =

0.179 ac, Inflow Depth > 2.32" for 2-Year Storm event

Inflow

0.52 cfs @ 12.05 hrs, Volume=

0.035 af

Outflow

0.52 cfs @ 12.05 hrs, Volume=

0.035 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach S2: (new node)

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 12

10/30/2006

Reach S1: (new node)

Inflow Area =

1.485 ac, Inflow Depth > 2.59" for 2-Year Storm event

Inflow

4.66 cfs @ 12.04 hrs, Volume=

0.321 af

Outflow

4.66 cfs @ 12.04 hrs, Volume=

0.321 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach S1: (new node)

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 11 10/30/2006

Reach FR: Fore River

Inflow Area =

1.446 ac, Inflow Depth > 2.54" for 2-Year Storm event

Inflow

4.15 cfs @ 12.07 hrs, Volume=

0.306 af

Outflow

4.15 cfs @ 12.07 hrs, Volume=

0.306 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach FR: Fore River

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 10

10/30/2006

Reach CS: Combined Sewer

Inflow Area =

1.664 ac, Inflow Depth > 2.56" for 2-Year Storm event

Inflow

5.17 cfs @ 12.04 hrs, Volume=

0.355 af

Outflow

5.17 cfs @ 12.04 hrs, Volume=

0.355 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach CS: Combined Sewer

Page 9 10/30/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5X: Ocean Gateway Gravel Lot

Runoff

===

2.91 cfs @ 12.08 hrs, Volume=

0.219 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.00"

-	Α	rea (sf)	CN	Description								
		675	98	Buildings								
		1,415	98	Paved								
		41,460	98	Gravel Park	ravel Parking							
		695	68	<50% Gras	s cover, Po	oor, HSG A						
		44,245	98	Weighted A	verage							
		695		Pervious Ar	ea Ü							
		43,550		Impervious	Area							
	Tc	Length	Slope	,	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	2.9	15	0.0100	0.09		Sheet Flow, BC						
	,					Grass: Short n= 0.150 P2= 3.00"						
	1.4	85	0.0100	0.98		Sheet Flow, CD						
						Smooth surfaces n= 0.011 P2= 3.00"						
	1.2	150	0.0171	2.11		Shallow Concentrated Flow, DE						
• debermann						Unpaved Kv= 16.1 fps						
	5.5	250	Total									

Subcatchment 5X: Ocean Gateway Gravel Lot

10/30/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 4X: Turner Barker Gravel Lot

Runoff

1

1.25 cfs @ 12.06 hrs, Volume=

0.086 af, Depth> 2.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.00"

	Aı	rea (sf)	CN [Description							
· Canal		1,030	98 E	Buildings							
		285		Paved							
		16,130	98 (Gravel Parking							
		1,300	68 <	<50% Gras	s cover, Po	or, HSG A					
18,745 96 Weighted Average											
		1,300	F	Pervious Ar	ea						
		17,445	İ	mpervious	Area						
	Тс	Length	Slope	Velocity	Capacity	Description					
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	2.2	15	0.0200	0.11		Sheet Flow, AB					
						Grass: Short n= 0.150 P2= 3.00"					
	1.1	85	0.0200	1.29		Sheet Flow, BC					
						Smooth surfaces n= 0.011 P2= 3.00"					
	0.9	110	0.0150	1.97		Shallow Concentrated Flow, CD					
-						Unpaved Kv= 16.1 fps					
	4.2	210	Total								

Subcatchment 4X: Turner Barker Gravel Lot

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 7 10/30/2006

Subcatchment 3X: Turner Barker

Runoff

==

0.52 cfs @ 12.05 hrs, Volume=

0.035 af, Depth> 2.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.00"

_	A	rea (sf)	CN E	Description						
		4,000	98 E	Building		700 C T T T T T T T T T T T T T T T T T T				
		2,980	98 (3ravel Park						
*000		830	68 <	<50% Grass cover, Poor, HSG A						
		7,810	95 V	Veighted A	verage					
		830	F	Pervious Ar	ea					
		6,980		Impervious Area						
	Tc	Length	Slope		Capacity	Description				
-	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	2.2	15	0.0200	0.11		Sheet Flow, AB				
						Grass: Short n= 0.150 P2= 3.00"				
	1.1	85	0.0200	1.29		Sheet Flow, BC				
						Smooth surfaces n= 0.011 P2= 3.00"				
	0.3	40	0.0200	2.28		Shallow Concentrated Flow, CD				
_		Sileman		The second secon		Unpaved Kv= 16.1 fps				
	3.6	140	Total							

Subcatchment 3X: Turner Barker

Subcatchment 2X: Breakaway

Runoff

-

0.51 cfs @ 12.01 hrs, Volume=

0.034 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.00"

	Area (sf)	CN	Description					
	5,870	98	Building					
	950	98	Gravel Park	king				40.000
	6,820	98	Weighted A	verage				
	6,820		Impervious	Area				
	c Length	Slope	•	Capacity	Description			
(mir	n) (feet)	(ft/ft) (ft/sec)	(cfs)				
0.	9 65	0.020	1.22		Sheet Flow, AB			
					Smooth surfaces	n= 0.011	P2= 3.00"	

Subcatchment 2X: Breakaway

Prepared by Woodard & Curran
HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 1X: Shipyard Gravel Lot

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 4 10/30/2006

Subcatchment 1X: Shipyard Gravel Lot

Runoff

1000

4.20 cfs @ 12.04 hrs, Volume=

0.287 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.00"

	А	rea (sf)	CN D	escription		
-	2,635 98 Building					
	29,940 98 Gravel Parking				ina	
		25,280		aved	9	
-		57,855		Veighted A	verage	
		57,855		npervious	_	
		0.,000			• • •	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
-	0.7	60	0.0333	1.47		Sheet Flow, AB
						Smooth surfaces n= 0.011 P2= 3.00"
	0.3	40	0.1000	2.11		Sheet Flow, BC
						Smooth surfaces n= 0.011 P2= 3.00"
	0.2	40	0.0500	3.60		Shallow Concentrated Flow, CD
						Unpaved Kv= 16.1 fps
	0.9	90	0.0111	1.70		Shallow Concentrated Flow, DE
						Unpaved Kv= 16.1 fps
	0.2	40	0.0625	4.03		Shallow Concentrated Flow, EF
						Unpaved Kv= 16.1 fps
	0.1	32	0.0100	5.90	4.63	Circular Channel (pipe), FG
					····	Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.010
	2.4	302	Total			

Prepared by Woodard & Curran

Pond D8: Hancock Street Storm System

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 3 10/30/2006

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1X: Shipyard Gravel Lot Flow Length=30	Runoff Area=57,855 sf Runoff Depth>2.59" 2' Tc=2.4 min CN=98 Runoff=4.20 cfs 0.287 af
Subcatchment 2X: Breakaway Flow Length=65' Slope=0.0200	Runoff Area=6,820 sf Runoff Depth>2.59" '/' Tc=0.9 min CN=98 Runoff=0.51 cfs 0.034 af
Subcatchment 3X: Turner Barker Flow Length=140' Slope=0.0200	Runoff Area=7,810 sf Runoff Depth>2.32" '/' Tc=3.6 min CN=95 Runoff=0.52 cfs 0.035 af
Subcatchment 4X: Turner Barker Gravel Lot Flow Length=21	Runoff Area=18,745 sf Runoff Depth>2.41" 0' Tc=4.2 min CN=96 Runoff=1.25 cfs 0.086 af
Subcatchment 5X: Ocean Gateway Gravel Lot Flow Length=25	Runoff Area=44,245 sf Runoff Depth>2.59" 0' Tc=5.5 min CN=98 Runoff=2.91 cfs 0.219 af
Reach CS: Combined Sewer	Inflow=5.17 cfs 0.355 af Outflow=5.17 cfs 0.355 af
Reach FR: Fore River	Inflow=4.15 cfs 0.306 af Outflow=4.15 cfs 0.306 af
Reach S1: (new node)	Inflow=4.66 cfs 0.321 af Outflow=4.66 cfs 0.321 af
Reach S2: (new node)	Inflow=0.52 cfs 0.035 af Outflow=0.52 cfs 0.035 af
Reach TOT: (new node)	Inflow=9.15 cfs 0.661 af Outflow=9.15 cfs 0.661 af
Pond D2: Commercial Street Storm System	Peak Elev=9.45' Inflow=1.25 cfs 0.086 af 15.0" x 192.0' Culvert Outflow=1.25 cfs 0.086 af
Pond D3: Commercial	Peak Elev=9.05' Inflow=1.25 cfs 0.086 af 15.0" x 192.0' Culvert Outflow=1.25 cfs 0.086 af
Pond D7: Hancock	Peak Elev=8.98' Inflow=2.91 cfs 0.219 af 30.0" x 36.0' Culvert Outflow=2.91 cfs 0.219 af

Peak Elev=10.50' Inflow=2.91 cfs 0.219 af 24.0" x 196.0' Culvert Outflow=2.91 cfs 0.219 af

Pre-Development
Prepared by Woodard & Curran
HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 2 10/30/2006

Area Listing (all nodes)

Area (acres)	<u>CN</u>	Description (subcats)
0.065	68	<50% Grass cover, Poor, HSG A (3X,4X,5X)
0.287	98	Building (1X,2X,3X)
0.039	98	Buildings (4X,5X)
2.100	98	Gravel Parking (1X,2X,3X,4X,5X)
0.619	98	Paved (1X,4X,5X)
3.110		

Prepared by Woodard & Curran HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 74 11/22/2006

Pond UH2: Hancock Link DMH2

Inflow Area = 1.086 ac, Inflow Depth > 3.73" for 25-Year Storm event

Inflow 0.338 af

2.40 cfs @ 12.20 hrs, Volume= 2.40 cfs @ 12.20 hrs, Volume= Outflow 0.338 af, Atten= 0%, Lag= 0.0 min

Primary 2.40 cfs @ 12.20 hrs, Volume= 0.338 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 17.04' @ 12.20 hrs

Flood Elev= 22.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	16.39'	24.0" x 106.0' long Culvert
	•		RCP, end-section conforming to fill, Ke= 0.500
			Outlet Invert= 11.73' S= 0.0440 '/' Cc= 0.900 n= 0.012

Primary OutFlow Max=2.40 cfs @ 12.20 hrs HW=17.04' TW=12.28' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.40 cfs @ 2.74 fps)

Pond UH2: Hancock Link DMH2

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Page 73

Pond UH1: Hancock Link DMH1

Inflow Area = 1.086 ac, Inflow Depth > 3.73" for 25-Year Storm event

Inflow = 2.40 cfs @ 12.20 hrs, Volume= 0.338 af

Outflow = 2.40 cfs @ 12.20 hrs, Volume= 0.338 af, Atten= 0%, Lag= 0.0 min

Primary = 2.40 cfs @ 12.20 hrs, Volume= * 0.338 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 12.28' @ 12.20 hrs

Flood Elev= 16.51'

Device Routing Invert Outlet Devices

#1 Primary

11.63'

24.0" x 125.0' long Culvert

RCP, end-section conforming to fill, Ke= 0.500

Outlet Invert= 9.88' S= 0.0140 '/' Cc= 0.900 n= 0.012

Primary OutFlow Max=2.40 cfs @ 12.20 hrs HW=12.28' TW=10.43' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.40 cfs @ 2.74 fps)

Pond UH1: Hancock Link DMH1

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Page 72

Pond D8: Hancock Street Storm System

1.086 ac, Inflow Depth > 3.73" for 25-Year Storm event Inflow Area =

2.40 cfs @ 12.20 hrs, Volume= 2.40 cfs @ 12.20 hrs, Volume= 0.338 af Inflow

0.338 af, Atten= 0%, Lag= 0.0 min Outflow

Primary 2.40 cfs @ 12.20 hrs, Volume= 0.338 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 10.43' @ 12.20 hrs

Flood Elev= 15.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	9.78'	24.0" x 196.0' long Culvert Ke= 0.500
	-		Outlet Invert= 8.18 S= 0.0082 '/' Cc= 0.900 n= 0.011

Primary OutFlow Max=2.40 cfs @ 12.20 hrs HW=10.43' TW=8.90' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.40 cfs @ 2.74 fps)

Pond D8: Hancock Street Storm System

Prepared by Woodard & Curran

Page 71 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond D7: Hancock

Inflow Area = 1.086 ac, Inflow Depth > 3.73" for 25-Year Storm event

Inflow = 2.40 cfs @ 12.20 hrs, Volume= 0.338 af

Outflow = 2.40 cfs @ 12.20 hrs, Volume= 0.338 af, Atten= 0%, Lag= 0.0 min

Primary = 2.40 cfs @ 12.20 hrs, Volume= 0.338 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 8.90' @ 12.20 hrs

Flood Elev= 13.91

Device	Routing	Invert	Outlet Devices
#1	Primary	8.08'	30.0" x 36.0' long Culvert Ke= 0.500
			Outlet Invert= 8.07' S= 0.0003 '/' Cc= 0.900 n= 0.012

Primary OutFlow Max=2.40 cfs @ 12.20 hrs HW=8.90' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 2.40 cfs @ 2.57 fps)

Pond D7: Hancock

Prepared by Woodard & Curran HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Pond D3: Commercial

1.625 ac, Inflow Depth > 4.57" for 25-Year Storm event Inflow Area =

6.09 cfs @ 12.11 hrs, Volume= 0.618 af Inflow

Outflow 6.09 cfs @ 12.11 hrs, Volume= 0.618 af, Atten= 0%, Lag= 0.0 min

6.09 cfs @ 12.11 hrs, Volume= 0.618 af Primary

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 10.89' @ 12.11 hrs

Flood Elev= 13.91'

Device	Routing	Invert	Outlet Devices '	
#1	Primary	8.35'	15.0" x 192.0' long Culvert Ke= 0.500	
	•		Outlet Invert= 8.06' S= 0.0015 '/' Cc= 0.900 n= 0.010	

Primary OutFlow Max=5.97 cfs @ 12.11 hrs HW=10.84' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 5.97 cfs @ 4.87 fps)

Pond D3: Commercial

Prepared by Woodard & Curran

Page 69 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond D2: Commercial Street Storm System

Inflow Area = 0.296 ac, Inflow Depth > 3.24" for 25-Year Storm event

Inflow = 1.14 cfs @ 12.06 hrs, Volume= 0.080 af

Outflow = 1.14 cfs @ 12.06 hrs, Volume= 0.080 af, Atten= 0%, Lag= 0.0 min

Primary = 1.14 cfs @ 12.06 hrs, Volume= 0.080 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 10.91' @ 12.16 hrs

Flood Elev= 14.95'

Primary OutFlow Max=0.00 cfs @ 12.06 hrs HW=10.06' TW=10.51' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)

Pond D2: Commercial Street Storm System

Page 68 11/22/2006

Prepared by Woodard & Curran
HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond 5C: Subsurface Detention for Plaza

Prepared by Woodard & Curran

Page 67 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond 5C: Subsurface Detention for Plaza

Inflow Area = 1.330 ac, Inflow Depth > 4.87" for 25-Year Storm event

Inflow = 6.84 cfs @ 12.08 hrs, Volume= 0.540 af

Outflow = 5.08 cfs @ 12.16 hrs, Volume= 0.539 af, Atten= 26%, Lag= 4.6 min

Primary = 5.08 cfs @ 12.16 hrs, Volume= 0.539 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 12.68' @ 12.16 hrs Surf.Area= 988 sf Storage= 1,986 cf

Plug-Flow detention time= 6.7 min calculated for 0.537 af (99% of inflow)

Center-of-Mass det. time= 5.1 min (739.4 - 734.3)

Volume	Invert	Avail.Storage	Storage Description
<i>#</i> 1	9.50'	1,085 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			3,952 cf Overall - 1,240 cf Embedded = 2,712 cf x 40.0% Voids
#2	10.50'	1,240 cf	44.6"W x 30.0"H x 7.12'L StormTech SC-740 x 27 Inside #1
		2,325 cf	Total Available Storage

 Elevation (feet)
 Surf.Area (sq-ft)
 Inc.Store (cubic-feet)
 Cum.Store (cubic-feet)

 9.50
 988
 0
 0

 13.50
 988
 3,952
 3,952

Device	Routing	Invert	Outlet Devices
#1	Primary	9.50'	12.0" x 50.0' long Culvert
., .	, ,		CMP, end-section conforming to fill, Ke= 0.500
			Outlet Invert= 9.00' S= 0.0100 '/' Cc= 0.900 n= 0.011
#2	Device 1	9.50'	8.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	10.50'	8.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	12.00'	12.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=5.27 cfs @ 12.16 hrs HW=12.66' TW=10.72' (Dynamic Tailwater)

1=Culvert (Inlet Controls 5.27 cfs @ 6.71 fps)

2=Orifice/Grate (Passes < 2.34 cfs potential flow)

-3=Orifice/Grate (Passes < 2.27 cfs potential flow)

-4=Orifice/Grate (Passes < 1.52 cfs potential flow)

Page 66 11/22/2006

Prepared by Woodard & Curran
HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond 1B: Subsurface Detention for Parking Garage

Prepared by Woodard & Curran

Page 65 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Pond 1B: Subsurface Detention for Parking Garage

Inflow Area = 0.780 ac, Inflow Depth > 4.87" for 25-Year Storm event

Inflow = 4.10 cfs @ 12.09 hrs, Volume= 0.317 af

Outflow = 2.19 cfs @ 12.22 hrs, Volume= 0.315 af, Atten= 47%, Lag= 8.1 min

Primary = 2.19 cfs @ 12.22 hrs, Volume= 0.315 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 21.14' @ 12.22 hrs Surf.Area= 1,770 sf Storage= 2,325 cf

Plug-Flow detention time= 17.4 min calculated for 0.314 af (99% of inflow)

Center-of-Mass det. time= 13.8 min (748.4 - 734.6)

Volume	Invert	Avail.Storage	Storage Description
#1	19.00'	1,950 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			7,080 cf Overall - 2,205 cf Embedded = 4,875 cf x 40.0% Voids
#2	20.00'	2,205 cf	44.6"W x 30.0"H x 7.12'L StormTech SC-740 x 48 Inside #1
		4 4 5 5	

4,155 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
19.00	1,770	0	0
23.00	1,770	7,080	7,080

Device	Routing	Invert	Outlet Devices
#1	Primary	19.00'	12.0" x 150.0' long Culvert
	-		CMP, end-section conforming to fill, Ke= 0.500
			Outlet Invert= 18.00' S= 0.0067 '/' Cc= 0.900 n= 0.011
#2	Device 1	20.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	19.00'	6.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	21.50'	12.0" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=2.18 cfs @ 12.22 hrs HW=21.13' TW=17.03' (Dynamic Tailwater)

1=Culvert (Passes 2.18 cfs of 4.17 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.89 cfs @ 4.52 fps)

-3=Orifice/Grate (Orifice Controls 1.30 cfs @ 6.61 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Prepared by Woodard & Curran

Page 64 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Reach TOT: (new node)

Inflow Area =

3.110 ac, Inflow Depth > 4.23" for 25-Year Storm event

Inflow

10.09 cfs @ 12.11 hrs, Volume=

1.097 af

Outflow

10.09 cfs @ 12.11 hrs, Volume=

1.097 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach TOT: (new node)

Prepared by Woodard & Curran

Page 63 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Reach FR: Fore River

Inflow Area =

2.712 ac, Inflow Depth > 4.23" for 25-Year Storm event

Inflow

8.37 cfs @ 12.12 hrs, Volume=

0.957 af

Outflow

8.37 cfs @ 12.12 hrs, Volume=

0.957 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach FR: Fore River

Prepared by Woodard & Curran

Page 62 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Reach CS: Combined Sewer

Inflow Area =

0.398 ac, Inflow Depth > 4.22" for 25-Year Storm event

Inflow Outflow

2.07 cfs @ 12.06 hrs, Volume= 2.07 cfs @ 12.06 hrs, Volume=

0.140 af

0.140 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach CS: Combined Sewer

Prepared by Woodard & Curran

Page 61 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5CP: Plaza

Runoff

=

0.68 cfs @ 12.02 hrs, Volume=

0.047 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

A	rea (sf)	CN I	Description					
	4,995	98	Paved park	ing & roofs				
	4,995		mpervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
1.2	75	0.0125	1.04		Sheet Flow, AB Smooth surfaces	n= 0.011	P2= 3.00"	

Subcatchment 5CP: Plaza

Page 60 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5BP: East Half of Complex

Runoff

4.65 cfs @ 12.09 hrs, Volume=

0.359 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

A	rea (sf)	CN	Description			
	32,915	98	Paved parki	ng & roofs		
	5,595	98	Plaza			
	38,510	98	Weighted A	verage		
	38,510		Impervious	Area		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)		
6.0					Direct Entry, Direct Entry	

Subcatchment 5BP: East Half of Complex

Prepared by Woodard & Curran

Page 59 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5AP: West Half of Complex

Runoff

1.74 cfs @ 12.09 hrs, Volume= 0.134 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

40000000	Α	rea (sf)	CN	Description			
:		13,840	98	Buildings			
-		570	98	Paved			
		14,410 14,410	98	Weighted A			
		14,410		Impervious	Area		•
	Tc	Length	Slop	e Velocity	Capacity	Description	
-	(min)	(feet)	(ft/f	(ft/sec)	(cfs)	•	
	6.0					Direct Entry, Direct Entry	

Subcatchment 5AP: West Half of Complex

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 4P: Back of PS

Runoff 0.01 cfs @ 12.44 hrs, Volume=

0.002 af, Depth> 0.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	Α	rea (sf)	CN D	escription		
3,655 39 >75% Grass cover, Good, HSG A						ood, HSG A
	3,655 Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.6	100	0.0300	0.19		Sheet Flow, AB
	0.1	10	0.0300	1.21		Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow, BC Short Grass Pasture Kv= 7.0 fps
_	8.7	110	Total			

Subcatchment 4P: Back of PS

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 57 11/22/2006

Subcatchment 3P: Turner Barker

Runoff

1.14 cfs @ 12.06 hrs, Volume=

0.078 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

_	Ai	rea (sf)	CN E	Description		
		4,000	98 E	Building		
		4,380	98 F	aved park	ing & roofs	
_		850	39 >	75% Gras	s cover, Go	ood, HSG A
		9,230	93 V	Veighted A	verage	
		850	F	Pervious Ar	ea	
		8,380		mpervious	Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.8	10	0.0050	0.06		Sheet Flow, AB
						Grass: Short n= 0.150 P2= 3.00"
	0.8	30	0.0050	0.60		Sheet Flow, BC
						Smooth surfaces n= 0.011 P2= 3.00"
	0.4	120	0.0100	5.36	4.21	XI I //
						Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011
	4.0	160	Total			

Subcatchment 3P: Turner Barker

Page 56 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 2P: Office Building

Page 55 11/22/2006

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 2P: Office Building

Runoff

2.07 cfs @ 12.06 hrs, Volume=

0.140 af, Depth> 4.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

Α	rea (sf)	CN I	Description		
	5,810	98	Building	,	
	1,110	9.8	⊃aved road	s w/curbs 8	& sewers
	2,130	39 :	>75% Gras	s cover, Go	ood, HSG A
	8,300	98 (Gravel Park	ring	
	17,350	91 \	Neighted A	verage	
	2,130		Pervious Ar	ea	
	15,220		mpervious	Area	
				_	
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)		(cfs)	
1.1	90	0.0250	1.43		Sheet Flow, AB
					Smooth surfaces n= 0.011 P2= 3.00"
2.1	90	0.0100	0.70		Shallow Concentrated Flow, BC
0.4	0.5		0.40		Short Grass Pasture Kv= 7.0 fps
0.1	25	0.2000	3.13		Shallow Concentrated Flow, CD
0.0	0.5	0.0000	4 57	3	Short Grass Pasture Kv= 7.0 fps
0.9	85	0.0060	1.57		Shallow Concentrated Flow, DE
				**************************************	Paved Kv= 20.3 fps
4.2	290	Total			

Page 54 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 1BP: Parking Garage

Runoff

4.10 cfs @ 12.09 hrs, Volume=

0.317 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	Α	rea (sf)	CN	Description		
		30,730	98	Building		
		3,255	98	Paved		
		33,985	98	Weighted A	verage	
		33,985		Impervious	Area	
					_	
	Tc	Length	Slop	e Velocity	Capacity	Description
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry, Direct Entry

Subcatchment 1BP: Parking Garage

Prepared by Woodard & Curran

Page 53 11/22/2006

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Subcatchment 1AP: Open Space

Runoff

-

0.29 cfs @ 12.11 hrs, Volume=

0.024 af, Depth> 0.92"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	Α	rea (sf)	CN [Description						
		10,440	39 >	>75% Grass cover, Good, HSG A						
		2,900	, ,							
		13,340	52 \	Neighted A	verage					
	10,440 Pervious Area				·ea					
2,900 Impervious Area										
					_					
	Tc	Length	Slope	•	Capacity	Description				
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.7	45	0.0200	1.14		Sheet Flow, AB				
						Smooth surfaces n= 0.011 P2= 3.00"				
	4.8	55	0.0400	0.19		Sheet Flow, BC				
						Grass: Short n= 0.150 P2= 3.00"				
	0.6	65	0.0600	1.71		Shallow Concentrated Flow, CD				
						Short Grass Pasture Kv= 7.0 fps				
	6.1	165	Total							

Subcatchment 1AP: Open Space

Post-Development w/ StormTech Type III 24-hr 25-Year Storm Rainfall=5.50"

Prepared by Woodard & Curran

Page 52

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Pond D7: Hancock

Peak Elev=8.90' Inflow=2.40 cfs 0.338 af 30.0" x 36.0' Culvert Outflow=2.40 cfs 0.338 af

Pond D8: Hancock Street Storm System

Peak Elev=10.43' Inflow=2.40 cfs 0.338 af

24.0" x 196.0' Culvert Outflow=2.40 cfs 0.338 af

Pond UH1: Hancock Link DMH1

Peak Elev=12.28' Inflow=2.40 cfs 0.338 af

24.0" x 125.0' Culvert Outflow=2.40 cfs 0.338 af

Pond UH2: Hancock Link DMH2

Peak Elev=17.04' Inflow=2.40 cfs 0.338 af 24.0" x 106.0' Culvert Outflow=2.40 cfs 0.338 af

Total Runoff Area = 3.110 ac Runoff Volume = 1.101 af Average Runoff Depth = 4.25" 12.60% Pervious Area = 0.392 ac 87.40% Impervious Area = 2.718 ac

Pond D3: Commercial

Post-Development w/ StormTech Type III 24-hr 25-Year Storm Rainfall=5.50"

Peak Elev=10.89' Inflow=6.09 cfs 0.618 af 15.0" x 192.0' Culvert Outflow=6.09 cfs 0.618 af

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

Page 51 11/22/2006

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
Subcatchment 1AP: Open Space	Flow Length=165'	Runoff Area=13,340 sf Runoff Depth>0.92" Tc=6.1 min CN=52 Runoff=0.29 cfs 0.024 af					
Subcatchment 1BP: Parking Garage	/	Runoff Area=33,985 sf Runoff Depth>4.87" Tc=6.0 min CN=98 Runoff=4.10 cfs 0.317 af					
Subcatchment 2P: Office Building	Flow Length=290'	Runoff Area=17,350 sf Runoff Depth>4.22" Tc=4.2 min CN=91 Runoff=2.07 cfs 0.140 af					
Subcatchment 3P: Turner Barker	Flow Length=160'	Runoff Area=9,230 sf Runoff Depth>4.43" Tc=4.0 min CN=93 Runoff=1.14 cfs 0.078 af					
Subcatchment 4P: Back of PS Flow Length=11	0' Slope=0.0300 '/'	Runoff Area=3,655 sf Runoff Depth>0.25" Tc=8.7 min CN=39 Runoff=0.01 cfs 0.002 af					
Subcatchment 5AP: West Half of Comple	X	Runoff Area=14,410 sf Runoff Depth>4.87" Tc=6.0 min CN=98 Runoff=1.74 cfs 0.134 af					
Subcatchment 5BP: East Half of Complex	×	Runoff Area=38,510 sf Runoff Depth>4.87" Tc=6.0 min CN=98 Runoff=4.65 cfs 0.359 af					
Subcatchment 5CP: Plaza Flow Length=7	5' Slope=0.0125 '/'	Runoff Area=4,995 sf Runoff Depth>4.87" Tc=1.2 min CN=98 Runoff=0.68 cfs 0.047 af					
Reach CS: Combined Sewer		Inflow=2.07 cfs 0.140 af Outflow=2.07 cfs 0.140 af					
Reach FR: Fore River		Inflow=8.37 cfs 0.957 af Outflow=8.37 cfs 0.957 af					
Reach TOT: (new node)		Inflow=10.09 cfs 1.097 af Outflow=10.09 cfs 1.097 af					
Pond 1B: Subsurface Detention for Parki	ng G Peak Elev=21	.14' Storage=2,325 cf Inflow=4.10 cfs 0.317 af Outflow=2.19 cfs 0.315 af					
Pond 5C: Subsurface Detention for Plaza	Peak Elev=12	2.68' Storage=1,986 cf Inflow=6.84 cfs 0.540 af Outflow=5.08 cfs 0.539 af					
Pond D2: Commercial Street Storm Syste		Peak Elev=10.91' Inflow=1.14 cfs 0.080 af 5.0" x 192.0' Culvert Outflow=1.14 cfs 0.080 af					

Prepared by Woodard & Curran

Page 50

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Pond UH2: Hancock Link DMH2

Inflow Area = 1.086 ac, Inflow Depth > 3.12" for 10-Year Storm event

Inflow 0.282 af

2.06 cfs @ 12.21 hrs, Volume= 2.06 cfs @ 12.21 hrs, Volume= Outflow 0.282 af, Atten= 0%, Lag= 0.0 min

Primary 2.06 cfs @ 12.21 hrs, Volume= 0.282 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 16.99' @ 12.21 hrs

Flood Elev= 22.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	16.39'	24.0" x 106.0' long Culvert
			RCP, end-section conforming to fill, Ke= 0.500
			Outlet Invert= 11.73' S= 0.0440 '/' Cc= 0.900 n= 0.012

Primary OutFlow Max=2.06 cfs @ 12.21 hrs HW=16.98' TW=12.22' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.06 cfs @ 2.63 fps)

Pond UH2: Hancock Link DMH2

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Page 49

Pond UH1: Hancock Link DMH1

Inflow Area =

1.086 ac, Inflow Depth > 3.12" for 10-Year Storm event

Inflow Outflow

2.06 cfs @ 12.21 hrs, Volume= 2.06 cfs @ 12.21 hrs, Volume= 0.282 af

0.282 af, Atten= 0%, Lag= 0.0 min

Primary

#1

2.06 cfs @ 12.21 hrs, Volume=

0.282 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 12.23' @ 12.21 hrs

Primary

Flood Elev= 16.51'

Device Routing

Outlet Devices Invert

11.63'

24.0" x 125.0' long Culvert

RCP, end-section conforming to fill, Ke= 0.500

Outlet Invert= 9.88' S= 0.0140 '/' Cc= 0.900 n= 0.012

Primary OutFlow Max=2.06 cfs @ 12.21 hrs HW=12.22' TW=10.37' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.06 cfs @ 2.63 fps)

Pond UH1: Hancock Link DMH1

Type III 24-hr 10-Year Storm Rainfall=4.70"

Prepared by Woodard & Curran

HydroCAD® 8.00 s/n 001204 © 2006 HydroCAD Software Solutions LLC

11/22/2006

Page 48

Pond D8: Hancock Street Storm System

Inflow Area = 1.086 ac, Inflow Depth > 3.12" for 10-Year Storm event

Inflow = 2.06 cfs @ 12.21 hrs, Volume= 0.282 af

Outflow = 2.06 cfs @ 12.21 hrs, Volume= 0.282 af, Atten= 0%, Lag= 0.0 min

Primary = 2.06 cfs @ 12.21 hrs, Volume= 0.282 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 10.38' @ 12.21 hrs

Flood Elev= 15.38'

Device	Routing	Invert	Outlet Devices	
#1	Primary	9.78'	24.0" x 196.0' long Culvert Ke= 0.500	
			Outlet Invert= 8.18' S= 0.0082 '/' Cc= 0.900 n= 0.011	

Primary OutFlow Max=2.06 cfs @ 12.21 hrs HW=10.37' TW=8.84' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.06 cfs @ 2.63 fps)

Pond D8: Hancock Street Storm System

