

Tighe&Bond

72 Munjoy Street Condos 72 Munjoy Street Portland, ME

Drainage Study

Prepared For:

Peninsula Property Development

July 20, 2015

Section 1 Narrative

1.1	On Site Soil Description	
Section 2	Drainage Analysis	
2.1	Calculation Methods	
2.2	Pre-Development Conditions	
	2.2.1 Pre-Development Watershed Plan	
	2.2.2 Pre-Development Calculations	
2.3	Post-Development Conditions	
	2.3.1 Post-Development Watershed Plan	
	2.3.2 Post-Development Calculations	
2.4	Peak Rate Comparisons	
2.5	Stormwater Treatment	
2.6	Mitigation Description and Best Management Practices	2-10

Section 3 Long Term Operations & Maintenance Plan

3.1	Contact/Responsible Party 3-1						
3.2	Maintenance Items						
3.3	Overa	Il Site Operation & Maintenance Schedule	3-2				
	3.3.1	Disposal Requirements	3-3				
	3.3.2	Snow & Ice Management for Standard Walkways and Pavement	3-3				
	3.3.3	Snow & Ice Management for Porous Concrete	3-3				
	3.3.4	Annual Updates & Log Requirements	3-4				

Section 4 Appendices

4.1	Site Plans - Bound Separately	1-1
4.2	Soil Maps	1-2
4.3	Precipitation Table	1-3
J:\P\P0765 Penir	sula Property Development\DRAINAGE\DRAINAGE STUDIES\P0765-Drainage Study.doc.do	сх

Section 1 Narrative

The proposed project consists of the construction of a four (4) story condominium building on a 0.13 acre lot in the R-6 Residential Zone. The proposed building will be connected to an existing two (2) story home. There will also be associated site improvements that include stormwater management with porous concrete and new utility service connections in Munjoy Street.

The site is currently developed with a two (2) story 1,334 SF footprint house that includes an existing paved driveway. The existing building will remain, but the paved driveway will be demolished as part of the proposed project. Currently, the runoff from the majority of the site including the driveway and roof flows to the northeast of the property where it ultimately reaches the closed drainage system in Munjoy Street.

The proposed development will increase impervious area by approximately 2,500 SF. The proposed stormwater management system, which consists of porous concrete, has been designed to mitigate additional impervious areas by decreasing post-development peak runoff rates for the 2-year, 10-year, and 25-year design storms.

The proposed stormwater management system has been designed to meet the requirements and design principles outlined in the City of Portland Technical Manual and the Maine Stormwater Best Management Practices Manual.

1.1 On Site Soil Description

Section 7 of the City of Portland Technical Manual requires a Soil Survey be completed by a Maine Certified Soil Scientist for Level III Site Plan Submissions. We are requesting a waiver from this requirement. On-site soil information used for this drainage analysis was taken from the National Resources Conservation Service (NRCS) Web Soil Survey (WSS). The WSS indicates that soils in this area consist of Hinckley gravelly sandy loam, which is in Group A of the Hydrologic Soil classification. Soils in this group have high infiltration rates when thoroughly wet, which makes them suitable for infiltration.

The proposed porous concrete pavement section has been modeled assuming a conservative infiltration rate of 1in/hr. The saturated hydraulic conductivity rating for this soil is approximately 8.2in/hr, which was based on data from the NRCS WSS. The NRCS WSS soil data has been included in this report.

Section 2 Drainage Analysis

2.1 Calculation Methods

The design storms analyzed in this study are the 2-year, 10-year and 25-year 24-hour duration storm events. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. A Type III storm pattern was used in the model.

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

References:

1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.

2.2 Pre-Development Conditions

Pre-Development conditions are considered, for this study, to be the conditions of the site prior to the start of the ongoing excavation operations. In order to analyze the predevelopment condition, the site has been divided into two (2) contributing watershed areas modeled at one (1) point of analysis. Th points of analysis and watersheds are depicted on the plan entitled "Pre-Development Watershed Plan", Sheet WS-1.

Point of Analysis (PA-1)

Point of Analysis One (PA-1) is comprised of Pre-Development Watershed (WS-1A) and (WS-1B). Pre-Development Watershed (WS-1A) consists of runoff generated by the existing $\pm 1,334$ SF (2) story building roof. Runoff generated from this area is collected by roof leaders and is discharged above ground where it ultimately flows into Munjoy Street. Pre-Development Watershed (WS-1B) consists of runoff generated by the existing paved driveway and lawn area. Runoff generated from this area travels via sheet flow into Munjoy Street.

2.2.1 Pre-Development Watershed Plan

2.2.2 Pre-Development Calculations

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.088	39	>75% Grass cover, Good, HSG A (WS-1A, WS-1B)
0.013	98	Paved parking, HSG A (WS-1B)
0.031	98	Roofs, HSG A (WS-1A)
0.132	59	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.132	HSG A	WS-1A, WS-1B
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
0.132		TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>1.51" Flow Length=75' Tc=6.8 min CN=84 Runoff=0.07 cfs 0.005 af
Subcatchment WS-1B:	Runoff Area=4,008 sf 14.60% Impervious Runoff Depth>0.06"

Link PA1: MUNJOY STREET

Inflow=0.07 cfs 0.006 af Primary=0.07 cfs 0.006 af

Total Runoff Area = 0.132 ac Runoff Volume = 0.006 af Average Runoff Depth = 0.50" 66.67% Pervious = 0.088 ac 33.33% Impervious = 0.044 ac

Flow Length=75' Tc=6.8 min CN=48 Runoff=0.00 cfs 0.000 af

Summary for Subcatchment WS-1A:

Runoff = 0.07 cfs @ 12.10 hrs, Volume= 0.005 af, Depth> 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN	Description						
	1,334	98	Roofs, HSG A						
	415	39	>75% Grass cover, Good, HSG A						
	1,749	84	Weighted A	verage					
	415		23.73% Pei	vious Area					
	1,334		76.27% Imp	pervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.5	50	0.0150	0.13		Sheet Flow,				
0.3	25	0.0100	1.50		Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps				
6.8	75	Total							

Summary for Subcatchment WS-1B:

Runoff = 0.00 cfs @ 14.96 hrs, Volume= 0.000 af, Depth> 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

Α	rea (sf)	CN [Description						
	585	98 F	Paved park	ing, HSG A	N				
	3,423	39 >	75% Gras	s cover, Go	bod, HSG A				
	4,008	48 V	Veighted A	verage					
	3,423	8	85.40% Pervious Area						
	585	1	4.60% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.5	50	0.0150	0.13		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.00"				
0.3	25	0.0100	1.50		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				

6.8 75 Total

Summary for Link PA1: MUNJOY STREET

Inflow Area	a =	0.132 ac, 3	33.33% Impe	ervious,	Inflow De	pth > 0.	50" for 2-\	'R event
Inflow	=	0.07 cfs @	12.10 hrs,	Volume	=	0.006 af		
Primary	=	0.07 cfs @	12.10 hrs,	Volume	=	0.006 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-PRE						
Prepared by Tigl	he & Bond	d				
HvdroCAD® 10.00	s/n 03436	© 2013	HvdroCAD	Software	Solutions L	LC.

 Type III 24-hr
 10-YR Rainfall=4.70"

 Printed
 7/20/2015

 C
 Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>2.99" Flow Length=75' Tc=6.8 min CN=84 Runoff=0.13 cfs 0.010 af
Subcatchment WS-1B:	Runoff Area=4,008 sf 14.60% Impervious Runoff Depth>0.48" Flow Length=75' Tc=6.8 min CN=48 Runoff=0.02 cfs 0.004 af

Link PA1: MUNJOY STREET

Inflow=0.15 cfs 0.014 af Primary=0.15 cfs 0.014 af

Total Runoff Area = 0.132 ac Runoff Volume = 0.014 af Average Runoff Depth = 1.24" 66.67% Pervious = 0.088 ac 33.33% Impervious = 0.044 ac

Summary for Subcatchment WS-1A:

Runoff = 0.13 cfs @ 12.10 hrs, Volume= 0.010 af, Depth> 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN I	Description						
	1,334	98	Roofs, HSG A						
	415	39 :	>75% Grass cover, Good, HSG A						
	1,749	84	Weighted Average						
	415	2	23.73% Pei	vious Area					
	1,334	-	76.27% Imp	pervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.5	50	0.0150	0.13		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.00"				
0.3	25	0.0100	1.50		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
6.8	75	Total							

Summary for Subcatchment WS-1B:

Runoff = 0.02 cfs @ 12.20 hrs, Volume= 0.004 af, Depth> 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.70"

 A	rea (sf)	CN [CN Description					
	585	98 F	98 Paved parking, HSG A					
	3,423	39 >	>75% Grass cover, Good, HSG A					
	4,008	48 \	48 Weighted Average					
	3,423	8	35.40% Pei	vious Area				
	585	1	4.60% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	. /	(1010)	(10,000)	(013)				
6.5	50	0.0150	0.13	(013)	Sheet Flow,			
6.5	50	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00"			
6.5 0.3	50 25	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow,			
 6.5 0.3	50 25	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps			

6.8 75 Total

Summary for Link PA1: MUNJOY STREET

Inflow Area	a =	0.132 ac,	33.33% Impe	ervious,	Inflow Depth	า> 1.2	4" for 10-	YR event
Inflow	=	0.15 cfs @	12.11 hrs,	Volume	= 0.0	014 af		
Primary	=	0.15 cfs @	12.11 hrs,	Volume	= 0.0	014 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-PRE	
Prepared by Tighe & Bond	
HvdroCAD® 10.00 s/n 03436 © 2013 HvdroCAD Software Solutions L	LC.

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>3.73"
	Flow Length=75' Tc=6.8 min CN=84 Runoff=0.17 cfs 0.012 af
SubcatchmentWS-1B:	Runoff Area=4,008 sf 14.60% Impervious Runoff Depth>0.78"

Link PA1: MUNJOY STREET

Inflow=0.22 cfs 0.018 af Primary=0.22 cfs 0.018 af

Total Runoff Area = 0.132 ac Runoff Volume = 0.018 af Average Runoff Depth = 1.68" 66.67% Pervious = 0.088 ac 33.33% Impervious = 0.044 ac

Flow Length=75' Tc=6.8 min CN=48 Runoff=0.05 cfs 0.006 af

Summary for Subcatchment WS-1A:

Runoff = 0.17 cfs @ 12.10 hrs, Volume= 0.012 af, Depth> 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

A	rea (sf)	CN	Description					
	1,334	98	Roofs, HSG A					
	415	39	>75% Gras	s cover, Go	bod, HSG A			
	1,749	84	Weighted A	verage				
	415		23.73% Pe	vious Area				
	1,334		76.27% Imp	pervious Ar	ea			
Тс	Length	Slone	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description			
6.5	50	0.0150	0.13		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.00"			
0.3	25	0.0100	1.50		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
6.8	75	Total						

Summary for Subcatchment WS-1B:

Runoff = 0.05 cfs @ 12.14 hrs, Volume= 0.006 af, Depth> 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

 A	rea (sf)	CN [CN Description					
	585	98 F	98 Paved parking, HSG A					
	3,423	39 >	>75% Grass cover, Good, HSG A					
	4,008	48 \	48 Weighted Average					
	3,423	8	35.40% Pei	vious Area				
	585	1	4.60% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	. /	(1010)	(10,000)	(013)				
6.5	50	0.0150	0.13	(013)	Sheet Flow,			
6.5	50	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00"			
6.5 0.3	50 25	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow,			
 6.5 0.3	50 25	0.0150	0.13	(013)	Sheet Flow, Grass: Short n= 0.150 P2= 3.00" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps			

6.8 75 Total

Summary for Link PA1: MUNJOY STREET

Inflow Area	a =	0.132 ac, 3	33.33% Impe	ervious,	Inflow De	pth > 1.	68" for 25	-YR event
Inflow	=	0.22 cfs @	12.11 hrs,	Volume	=	0.018 af		
Primary	=	0.22 cfs @	12.11 hrs,	Volume	=	0.018 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

2.3 Post-Development Conditions

The Post-Development drainage area is also characterized by two (2) contributing watershed areas modeled at one (1) point of analysis. The points of analysis and watersheds are depicted on the plan entitled "Post-Development Watershed Plan", Sheet WS-2.

Point of Analysis (PA-1)

Point of Analysis One (PA-1) is comprised of Post-Development Watershed (WS-1A) and (WS-1B). Post-Development Watershed (WS-1A) remains largely unchanged from the pre-development condition. Post-Development Watershed (WS-1B) consists of runoff generated by the proposed building roof, porous concrete driveway, and lawn area. Runoff generated from the proposed roof is collected by roof leaders and discharged into the reservoir course of the porous concrete. The remaining runoff generated in this watershed enters the porous concrete through the surface and is detained and infiltrated in the subsurface soils.

2.3.1 Post-Development Watershed Plan

2.3.2 Post-Development Calculations

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.032	39	>75% Grass cover, Good, HSG A (WS-1A, WS-1B)
0.028	98	Paved parking, HSG A (WS-1B)
0.074	98	Roofs, HSG A (WS-1A, WS-1B)
0.135	84	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.135	HSG A	WS-1A, WS-1B
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
0.135		TOTAL AREA

P0765-POST	Type III 24-hr 2-YR Rainfall=3.00"
Prepared by Tighe & Bond	Printed 7/20/2015
HydroCAD® 10.00 s/n 03436 © 2013 HydroCA	D Software Solutions LLC Page 4
Time span=0.00- Runoff by SCS TR- Reach routing by Dyn-Stor-Ind	24.00 hrs, dt=0.05 hrs, 481 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment WS-1A: Flow Length=75'	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>1.51" Slope=0.0110 '/' Tc=7.7 min CN=84 Runoff=0.07 cfs 0.005 af
Subcatchment WS-1B:	Runoff Area=4,112 sf 76.24% Impervious Runoff Depth>1.52" Tc=5.0 min CN=84 Runoff=0.17 cfs 0.012 af
Pond 1P: POROUS CONCRETE	Peak Elev=127.64' Storage=144 cf Inflow=0.17 cfs 0.012 af Outflow=0.03 cfs 0.012 af
Link PA1: MUNJOY STREET	Inflow=0.07 cfs 0.005 af

Inflow=0.07 cfs 0.005 af Primary=0.07 cfs 0.005 af

Total Runoff Area = 0.135 acRunoff Volume = 0.017 af
23.75% Pervious = 0.032 acAverage Runoff Depth = 1.51"
76.25% Impervious = 0.103 ac

Summary for Subcatchment WS-1A:

0.07 cfs @ 12.11 hrs, Volume= Runoff 0.005 af, Depth> 1.51" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN	Description				
	1,334	98	Roofs, HSC	βA			
	415	39 :	>75% Gras	s cover, Go	ood, HSG A		
	1,749	84	Neighted A	verage			
	415		23.73% Pervious Area				
	1,334		76.27% Imp	pervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
7.4	50	0.0110	0.11		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.00"		
0.3	25	0.0110	1.57		Shallow Concentrated Flow,		
					Grassed Waterway Kv= 15.0 fps		
7.7	75	Total					

Summary for Subcatchment WS-1B:

Runoff 0.17 cfs @ 12.08 hrs, Volume= 0.012 af, Depth> 1.52" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN	Description				
	1,230	98	Paved park	ing, HSG A	Α		
	1,905	98	Roofs, HSG A				
	977	39	>75% Gras	s cover, Go	ood, HSG A		
	4,112	84	Weighted A	verage			
	977		23.76% Pe	rvious Area	a		
	3,135		76.24% Imp	pervious Ar	rea		
Tc	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.0					Direct Entry,		

Summary for Pond 1P: POROUS CONCRETE

Inflow Area =	0.094 ac, 76.24% Impervious,	Inflow Depth > 1.52"	for 2-YR event
Inflow =	0.17 cfs @ 12.08 hrs, Volume	= 0.012 af	
Outflow =	0.03 cfs @ 11.95 hrs, Volume	= 0.012 af, Atte	en= 83%, Lag= 0.0 min
Discarded =	0.03 cfs @ 11.95 hrs, Volume	= 0.012 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-POST Prepared by Tighe & Bond HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC

Peak Elev= 127.64' @ 12.57 hrs Surf.Area= 1,230 sf Storage= 144 cf Flood Elev= 129.75' Surf.Area= 1,230 sf Storage= 1,107 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 32.3 min (863.5 - 831.2)

Volume	Invert	Avail.Sto	rage Stora	age Description	
#1	127.35'	1,1(07 cf Cust 2,768	om Stage Data (P 3 cf Overall x 40.0	rismatic) Listed below (Recalc) % Voids
Elevatio	n Si t)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
127.3	5	1,230	0	0	
129.6	0	1,230	2,768	2,768	
Device	Routing	Invert	Outlet Dev	rices	
#1	Discarded	127.35'	1.000 in/h	r Exfiltration over	Surface area

Discarded OutFlow Max=0.03 cfs @ 11.95 hrs HW=127.38' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Link PA1: MUNJOY STREET

Inflow /	Area :	=	0.040 ac,	76.27% Impe	ervious,	Inflow Dept	h> 1.5	51" for 2-Y	R event
Inflow	=	=	0.07 cfs @	12.11 hrs,	Volume	= 0.	005 af		
Primary	y =	=	0.07 cfs @	12.11 hrs,	Volume	= 0.	005 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-POST	Type III 24-hr 10-YR Rainfall=4.70"
Prepared by Tighe & Bond	Printed 7/20/2015
HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD	Software Solutions LLC Page 7
Time span=0.00-2 Runoff by SCS TR-2 Reach routing by Dyn-Stor-Ind n	24.00 hrs, dt=0.05 hrs, 481 points 20 method, UH=SCS, Weighted-CN nethod - Pond routing by Dyn-Stor-Ind method
Subcatchment WS-1A: Flow Length=75'	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>2.99" Slope=0.0110 '/' Tc=7.7 min CN=84 Runoff=0.13 cfs 0.010 af
Subcatchment WS-1B:	Runoff Area=4,112 sf 76.24% Impervious Runoff Depth>3.00" Tc=5.0 min CN=84 Runoff=0.33 cfs 0.024 af
Pond 1P: POROUS CONCRETE	Peak Elev=128.15' Storage=396 cf Inflow=0.33 cfs 0.024 af Outflow=0.03 cfs 0.024 af
Link PA1: MUNJOY STREET	Inflow=0.13 cfs 0.010 af Primary=0.13 cfs 0.010 af

Total Runoff Area = 0.135 acRunoff Volume = 0.034 af
23.75% Pervious = 0.032 acAverage Runoff Depth = 2.99"
76.25% Impervious = 0.103 ac

Summary for Subcatchment WS-1A:

0.13 cfs @ 12.11 hrs, Volume= Runoff 0.010 af, Depth> 2.99" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.70"

Α	rea (sf)	CN [Description		
	1,334	98 F	Roofs, HSC	βA	
	415	39 >	-75% Gras	s cover, Go	bod, HSG A
	1,749	84 \	Veighted A	verage	
	415	2	23.73% Pei	vious Area	
	1,334	7	76.27% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.4	50	0.0110	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.00"
0.3	25	0.0110	1.57		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
7.7	75	Total			

Summary for Subcatchment WS-1B:

Runoff 0.33 cfs @ 12.08 hrs, Volume= 0.024 af, Depth> 3.00" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN	Description			
	1,230	98	Paved park	ing, HSG A	Α	
	1,905	98	Roofs, HSC	θĂ		
	977	39	>75% Gras	s cover, Go	ood, HSG A	
	4,112	84	Weighted A	verage		
	977		23.76% Pervious Area			
	3,135		76.24% Imp	pervious Ar	rea	
Tc	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Summary for Pond 1P: POROUS CONCRETE

Inflow Area	1 =	0.094 ac, 7	6.24% Impervious	s, Inflow Depth >	3.00"	for 10-Y	R event
Inflow	=	0.33 cfs @	12.08 hrs, Volum	ne= 0.024	1 af		
Outflow	=	0.03 cfs @	11.75 hrs, Volum	ie= 0.024	af, Atte	n= 91%,	Lag= 0.0 min
Discarded	=	0.03 cfs @	11.75 hrs, Volum	1e= 0.024	1 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-POST Prepared by Tighe & Bond

Peak Elev= 128.15' @ 13.08 hrs Surf.Area= 1,230 sf Storage= 396 cf Flood Elev= 129.75' Surf.Area= 1,230 sf Storage= 1,107 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 115.0 min (926.6 - 811.7)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	127.35'	1,1(07 cf Cust 2,768	om Stage Data (P 3 cf Overall x 40.09	rismatic) Listed below (Recalc) % Voids
Elevatio (feet	n Si t)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
127.3	5	1,230	0	0	
129.6	0	1,230	2,768	2,768	
Device	Routing	Invert	Outlet Dev	ices	
#1	Discarded	127.35'	1.000 in/h	Exfiltration over	Surface area

Discarded OutFlow Max=0.03 cfs @ 11.75 hrs HW=127.38' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Link PA1: MUNJOY STREET

Inflow A	rea =	0.040 ac, 76.	27% Impervious,	Inflow Depth > 2.9	99" for 10-YR event
Inflow	=	0.13 cfs @ 12	2.11 hrs, Volume	= 0.010 af	
Primary	=	0.13 cfs @ 12	2.11 hrs, Volume	= 0.010 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-POST	Type III 24-hr 25-YR Rainfall=5.50"
Prepared by Tighe & Bond	Printed 7/20/2015
HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD	Software Solutions LLC Page 10
Time span=0.00-2	24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-2	20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind r	nethod - Pond routing by Dyn-Stor-Ind method
SubcatchmentWS-1A:	Runoff Area=1,749 sf 76.27% Impervious Runoff Depth>3.73"
Flow Length=75'	Slope=0.0110 '/' Tc=7.7 min CN=84 Runoff=0.16 cfs 0.012 af
Subcatchment WS-1B:	Runoff Area=4,112 sf 76.24% Impervious Runoff Depth>3.73"
	Tc=5.0 min CN=84 Runoff=0.41 cfs 0.029 af
Pond 1P: POROUS CONCRETE	Peak Elev=128.44' Storage=536 cf Inflow=0.41 cfs 0.029 af
	Outflow=0.03 cfs 0.029 af
Link PA1: MUNJOY STREET	Inflow=0.16 cfs 0.012 af
	Primary=0.16 cfs 0.012 af

Total Runoff Area = 0.135 acRunoff Volume = 0.042 af
23.75% Pervious = 0.032 acAverage Runoff Depth = 3.73"
76.25% Impervious = 0.103 ac

Summary for Subcatchment WS-1A:

Runoff = 0.16 cfs @ 12.11 hrs, Volume= 0.012 af, Depth> 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

A	rea (sf)	CN	Description		
	1,334	98	Roofs, HSC	θA	
	415	39	>75% Gras	s cover, Go	ood, HSG A
	1,749	84	Weighted A	verage	
	415		23.73% Pe	rvious Area	
	1,334		76.27% Imp	pervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.4	50	0.0110	0.11		Sheet Flow.
					Grass: Short n= 0.150 P2= 3.00"
0.3	25	0.0110	1.57		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
7.7	75	Total			

Summary for Subcatchment WS-1B:

Runoff = 0.41 cfs @ 12.07 hrs, Volume= 0.029 af, Depth> 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

Α	rea (sf)	CN	Description			
	1,230	98	Paved park	ing, HSG A	Α	
	1,905	98	Roofs, HSC	θĂ		
	977	39	>75% Gras	s cover, Go	ood, HSG A	
	4,112	84	Weighted A	verage		
	977		23.76% Pervious Area			
	3,135		76.24% Imp	pervious Ar	rea	
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Summary for Pond 1P: POROUS CONCRETE

Inflow Area	I =	0.094 ac, [·]	76.24% Impervi	ious, Inflow De	epth > 3.73"	for 25-Y	R event
Inflow	=	0.41 cfs @	12.07 hrs, Vo	olume=	0.029 af		
Outflow	=	0.03 cfs @	11.65 hrs, Vo	olume=	0.029 af, Att	en= 93%,	Lag= 0.0 min
Discarded	=	0.03 cfs @	11.65 hrs, Vo	olume=	0.029 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

P0765-POST

Prepared by Tighe & Bond HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC

Peak Elev= 128.44' @ 13.58 hrs Surf.Area= 1,230 sf Storage= 536 cf Flood Elev= 129.75' Surf.Area= 1,230 sf Storage= 1,107 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 163.7 min (969.2 - 805.5)

Volume	Invert	Avail.Sto	rage Sto	rage De	escription	
#1	127.35'	1,10	07 cf Cu 2,7	stom S 68 cf O	tage Data (P verall x 40.09	rismatic) Listed below (Recalc) % Voids
Elevatio	n Su t)	urf.Area (sq-ft)	Inc.Sto (cubic-fee	re et)	Cum.Store (cubic-feet)	
127.3	5	1,230		0	0	
129.6	0	1,230	2,76	88	2,768	
Device	Routing	Invert	Outlet De	evices		
#1	Discarded	127.35'	1.000 in/	hr Exfi	Itration over	Surface area

Discarded OutFlow Max=0.03 cfs @ 11.65 hrs HW=127.38' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Link PA1: MUNJOY STREET

Inflow Ar	ea =	0.040 ac,	76.27% Impervious,	Inflow Depth > 3	.73" for 25-YR event
Inflow	=	0.16 cfs @	12.11 hrs, Volume	e 0.012 af	
Primary	=	0.16 cfs @	12.11 hrs, Volume	e= 0.012 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: POROUS CONCRETE

Inflow Area	=	0.094	ac, 7	6.24% li	mper	vious,	Inflow	Depth >	4.8	5" for	100-`	YR even	t
Inflow :	=	0.53 c	fs @	12.07 h	rs, V	/olume=	=	0.038	af				
Outflow :	=	0.03 c	fs @	11.45 h	rs, V	/olume=	=	0.035	af,	Atten=	95%,	Lag= 0.	0 min
Discarded :	=	0.03 c	fs @	11.45 h	rs, V	/olume=	=	0.035	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 128.92' @ 14.15 hrs Surf.Area= 1,230 sf Storage= 771 cf Flood Elev= 129.75' Surf.Area= 1,230 sf Storage= 1,107 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 198.6 min (996.7 - 798.1)

Volume	Invert	Avail.Sto	rage Stora	rage Description	
#1	127.35'	1,1	07 cf Cust 2,768	stom Stage Data (Prismatic)Listed below (Recalc) 68 cf Overall x 40.0% Voids	
Elevatior (feet	n S	urf.Area (sq-ft)	Inc.Store (cubic-feet)	e Cum.Store t) (cubic-feet)	
127.3	5	1,230	0	0 0	
129.60)	1,230	2,768	8 2,768	
Device	Routing	Invert	Outlet Dev	vices	
#1	Discarded	127.35'	1.000 in/h	hr Exfiltration over Surface area	

Discarded OutFlow Max=0.03 cfs @ 11.45 hrs HW=127.38' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

2.4 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates for the 2-year, 10-year, and 25-year storm events. The post-development peak rate of runoff for each discharge point has been determined to be equal to or less than the peak runoff rate generated during the pre-development condition.

Point of Analysis	Pre/ Post 2-Year Storm (cfs)	Pre/ Post 10-Year Storm (cfs)	Pre/ Post 25-Year Storm (cfs)
PA1	0.07/ 0.07	0.15/ 0.13	0.22/ 0.16

2.5 Stormwater Treatment

The Applicant requests a waiver from pre-treatment and treatment requirements in the City of Portland Technical Manual for stormwater runoff generated by the additional impervious area ($\pm 2,500$ SF) that will result from the proposed development. The new impervious area consists of roof runoff, which does not typically require treatment as it is inherently clean, and the porous concrete driveway. The porous concrete driveway will not generate any runoff as water that falls onto the pavement will infiltrate into the reservoir course below the concrete. A small portion grass will contribute runoff into the driveway, but the grass provides sufficient treatment prior to discharge into the porous pavement.

2.6 Mitigation Description and Best Management Practices

In order to mitigate the increase in impervious area required for the proposed project, a stormwater system has been designed for this project utilizing low impact development measures.

The intent of the stormwater management system design is for runoff to be collected, detained, and infiltrated, where possible. Porous concrete pavement has been provided to mitigate potential impacts from the increase in impervious area.

All soil erosion and sediment control measures shall be in accordance with regulations and principles as outlined in the Stormwater Management for Maine: Best Management Practices and Maine Erosion and Sediment Control Handbook for Construction. The intent of the outlined measures is to minimize erosion and sedimentation during construction, stabilize and protect the site from erosion after construction is complete and improve stormwater quality from the site. Best Management Practices for this project include:

- Temporary practices to be implemented during construction.
- Permanent practices to be implemented after construction.
- Stormwater treatment devices.

TEMPORARY PRACTICES

Sequencing:

- 1. Construct temporary and permanent sediment, erosion and detention control facilities. Erosion, sediment and detention measures shall be installed prior to any earth moving operations that will influence stormwater runoff such as:
 - New construction
 - Development of borrow pit areas
 - Disposal of sediment spoil, stump and other solid waste
 - Control of dust
- 2. All permanent ditches, swales, detention, retention and sedimentation basins to be stabilized using the vegetative and nonstructural BMPs prior to directing runoff to them.
- 3. Clear and dispose of debris.
- 4. Construct temporary culverts and diversion channels as required.
- 5. Begin permanent and temporary seeding and mulching. All cut and fill slopes shall be seeded and mulched immediately after their construction.
- 6. Daily, or as required, construct temporary berms, drains, ditches, silt fences, sediment traps etc., mulch and seed as required.
- 7. Finish pave all roadways and parking lots.
- 8. Inspect and maintain all erosion and sediment control measures.

- 9. Complete permanent seeding and landscaping.
- 10. Remove trapped sediment from collection devices as appropriate and then remove temporary erosion control measures.

Stabilization Practices:

- 1. Install stabilized construction entrance at the location shown on plans.
- 2. Loam stockpiles shall be mulched, seeded and contained by a silt fence barrier.
- 3. All erosion control devices, including silt fences and storm drain inlet filters, shall be inspected at least once per week and following any rainfall of 1/4 inch or greater. All necessary maintenance shall be completed within 48 hours. A Maintenance Inspection Report shall be kept on site and made available by the contractor at the city's request.
- 4. Inactivity: Area of the site which has been disturbed, where construction activity will not occur for more than twenty-one (21) days, shall be temporarily stabilized by mulching and seeding.
- 5. Waste Disposal/Spill Prevention: The Erosion Control Notes and Details Sheet of the Site Plans fully detail the waste disposal and spill prevention procedures. All waste from construction activities shall be collected and stored in receptacles. No construction materials shall be buried on site. The Spill Prevention Plan focuses on personnel training, housekeeping, storage and standard practices for use and disposal of materials.

PERMANENT PRACTICES

The objectives for developing permanent Best Management Practices for this site include the following:

- Develop a plan that provides the best hydrologic condition both on site and downstream.
- Provide a higher level of removal of pollutants from stormwater runoff.
- Minimize impact on the natural environment.
- Minimize future maintenance.

Section 3 Long Term Operations & Maintenance Plan

It is the intent of this Operation and Maintenance Plan to identify the areas of this site that need special attention and consideration, as well as implementing a plan to assure routine maintenance. By identifying the areas of concern as well as implementing a frequent and routine maintenance schedule the site will maintain a high quality of stormwater runoff.

Annual Reporting Requirements

The owner or operator of a BMP or a qualified post-construction stormwater inspector hired by that person, shall, on or by June 30 of each year, provide a completed and signed certification to City of Portland Department of Public Services (DPS) in a form provided by DPS, certifying that the person has inspected the BMP(s) and that they are adequately maintained and functioning as intended by the approved post-construction stormwater management plan, or that they require maintenance or repair, including the record of the deficiency and corrective action(s) taken.

3.1 Contact/Responsible Party

Robert LeBlanc Peninsula Property Development 59 Moody Street Portland, Maine 04101

(Note: The contact information for the Contact/Responsible Party shall be kept current. If ownership changes, the Operation and Maintenance Plan must be transferred to the new party.)

3.2 Maintenance Items

Maintenance of the following items shall be recorded:

- Litter/Debris Removal
- Landscaping
- Porous Pavement Vacuuming and Sweeping

The following maintenance items and schedule represent the minimum action required. Periodic site inspections shall be conducted and all measures must be maintained in effective operating condition.

1

3.3 Overall Site Operation & Maintenance Schedule

Overall Site Operation and Maintenance Schedule						
Maintenance Item	Frequency of Maintenance	Operation				
Litter/Debris Removal	Weekly	Management Company				
Pavement Sweeping - Sweep impervious areas to remove sand and litter.	2 - 4 times annually	Parking Lot Sweeper				
Catch Basin (CB) / CBs/YDs to be cleaned of solids and oils.	Annually	Vacuum Truck				
Landscaping - Landscaped islands to be maintained and mulched.	Maintained as required and mulched each Spring	Management Company				

Porous Concr	Porous Concrete Inspection/Maintenance Requirements						
Inspection/ Maintenance	Frequency	Action					
Inspect for Signs of Deterioration and Spalling	Annually	- Repair as required					
Monitor for proper Infiltration	Periodically	 Inspect the area for infiltration rate. If required: hire qualified professional to assess the condition of the facility to determine measures required to restore the filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter. 					
Clean Porous Asphalt	2 - 4 times annually	- Vacuum Sweeper to clean entire porous concrete area (Note: power washing may be required on heavily soiled areas to dislodge particles prior to sweeping/vacuuming).					

3.3.1 Disposal Requirements

Disposal of debris, trash, sediment and other waste material should be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.

3.3.2 Snow & Ice Management for Standard Walkways and Pavement

Snow storage areas shall be located such that no direct untreated discharges are possible to receiving waters from the storage. Salt storage areas shall be covered or located such that no direct untreated discharges are possible to receiving waters from the storage site. Salt and shall be used to the minimum extent practical.

3.3.3 Snow & Ice Management for Porous Concrete

- Maintenance personnel shall be properly trained as to the locations of porous concrete pavement and operations and maintenance requirements for the porous concrete pavement.
- The porous concrete areas shall be plowed after every storm in accordance with standard plowing operations for standard pavement and as required to maintain safe conditions. Special plow blades may be used to prevent scarring but are not necessary (raised blade plowing is not recommended).
- The UNHSC has documented up to a 75% net salt reduction for de-icing measures over the course of a winter season. However, salt reduction is site dependent due to pavement shading, hours of operation, storm intensities, temperatures, etc. Salt/de-icing chemicals shall be applied as needed to maintain a safe and accessible site at all times. The following recommendations for salt/de-icing chemical application may be applicable:
 - Additional salt/de-icing chemical application may be needed during challenging storm events, particularly mixed precipitation events.
 - Salt/de-icing chemical application prior to storm events may be required to maintain a safe and accessible site during the first part of a storm.
 - Salt/de-icing chemical application during and after storm events may be required to control compact snow and ice not removed by plowing.
 - Salt/de-icing chemical reduction may be realized between storm events depending on black ice formation.
- Sand application is not recommended for porous concrete areas or areas that drain to porous concrete areas due to an increased maintenance burden.

3.3.4 Annual Updates & Log Requirements

The Owner and/or Contact/Responsible Party shall review this Operation and Maintenance Plan once per year for its effectiveness and adjust the plan and deed as necessary.

A log of all preventative and corrective measures for the stormwater system shall be kept on-site and be made available upon request by any public entity with administrative, health environmental or safety authority over the site.

	Stormwater Management Report							
Project Name		72 Munjoy	72 Munjoy Street Condos, Portland, ME					
BMP Description	Date of Inspection	Inspector	BMP Installed and Operating Properly?	Cleaning / Corrective Action Needed	Date of Cleaning / Repair	Performed By		
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					
			□Yes □No					

Section 4 Appendices

4.1 Site Plans - Bound Separately

4.2 Soil Maps

Natural Resources **Conservation Service** Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Cumberland County and Part of Oxford County, Maine (ME005)							
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
HIB	Hinckley gravelly sandy loam, 3 to 8 percent slopes	A	13.4	100.0%			
Totals for Area of Intere	est	13.4	100.0%				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Natural Resources **Conservation Service** Web Soil Survey National Cooperative Soil Survey

Saturated Hydraulic Conductivity (Ksat)

Saturated Hydraulic Conductivity (Ksat)— Summary by Map Unit — Cumberland County and Part of Oxford County, Maine (ME005)							
Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI			
НІВ	Hinckley gravelly sandy loam, 3 to 8 percent slopes	57.9133	13.4	100.0%			
Totals for Area of Intere	est	13.4	100.0%				

Description

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 1 Bottom Depth: 4 Units of Measure: Centimeters

4.3 Precipitation Table

Table 2-124 Hour Duration Rainfalls for Various Return PeriodsNatural Resources Conservation Service County Rainfall Data

	<u>Return Interval or Frequency</u>									
County	Storm Type	1-Yr	2-Yr	5-Yr	10- Yr	25- Yr	100- Yr	500 -Yr	Annual	
Androscoggin		2.5	3.0	3.9	4.6	5.4	6.5	7.8	45.3	
Aroostook C		2.1	2.1	3.2	3.6	4.2	5.0	5.9	36.1	(Presque Isle Area)
Aroostook N	S	2.0	2.3	3.0	3.5	4.0	4.8	5.7	36.1	(Fort Kent Area)
Aroostook S	E	2.2	2.5	3.3	3.8	4.4	5.3	6.4	39.0	(Houlton Area)
Cumberland NW	E	2.8	3.3	4.3	5.0	5.8	6.9	8.3	43.4	(NW of St. Route 11)
Cumberland SE		2.5	3.0	4.0	4.7	5.5	6.7	8.1	44.4	(SE of St. Route 11)
Franklin	Ν	2.4	2.9	3.7	4.2	4.9	5.9	7.0	45.6	
Hancock	0	2.4	2.7	3.6	4.2	4.9	6.0	7.2	45.2	
Kennebec	Т	2.4	3.0	3.8	4.4	5.1	6.1	7.2	41.7	
Knox-Lincoln	Ε	2.5	2.9	3.8	4.4	5.1	6.2	7.4	46.1	
Oxford E	S	2.5	3.0	4.0	4.6	5.3	6.4	7.6	43.0	(E of St. Route 26)
Oxford W		3.0	3.5	4.5	5.2	6.0	7.1	8.4	43.8	(W of St. Route 26)
Penobscot N	1	2.2	2.5	3.3	3.8	4.4	5.4	6.4	41.5	(N of CanAtl. Rwy)
Penobscot S	1	2.4	2.7	3.5	4.1	4.8	5.8	6.9	39.5	(S of CanAtl. Rwy)
Piscataquis N		2.2	2.5	3.3	3.8	4.4	5.3	6.3	38.5	(N of Can Atl. Rwy)
Piscataquis S	A N	2.3	2.6	3.4	4.0	4.6	5.5	6.6	41.0	(S of Can Atl. Rwy)
Sagadahoc	D	2.5	3.0	3.9	4.6	5.4	6.5	7.8	45.3	
Somerset N		2.2	2.5	3.3	3.8	4.4	5.3	6.3	37.3	(N of Can Atl. Rwy)
Somerset S	•	2.4	2.7	3.5	4.1	4.7	5.7	6.8	39.5	(S of Can Atl. Rwy)
Waldo	2	2.5	2.8	3.7	4.3	4.9	6.0	7.1	47.2	
Washington		2.4	2.5	3.4	4.0	4.8	5.9	7.1	44.2	
York		2.5	3.0	4.0	4.6	5.4	6.6	7.8	46.7	

NOTES: REVISED 4/10/92 Lew P. Crosby 24-HR DURATION RAINFALL

SOURCES: 24-HR. DATA - TP 40 ANNUAL DATA - CDAN

- **Note 1:** ¹Use *Type II* for Oxford County (with the exception of towns listed below) and Penobscot County (with the exception of towns listed below) and all Main counties not listed below)
- **Note 2:** ²Use *Type III* for York, Cumberland, Androscoggin, Sagadahoc, Kennebec, Waldo, Knox, Piscataquis, Somerset, Franklin, Aroostook, Lincoln, Hancock, Washington Counties; the following Oxford County Towns: Porter, Brownfield, Hiram, Denmark, Oxford, Hebron, Buckfield and Hartford; and the following Penobscot County Towns: Dixmont, Newburgh, Hampden, Bangor, Veazie, Orono, Bradley, Clifton, Eddington, Holden, Brewer, Orrington, Plymouth, Etna, Carmel, Hermon, Glenburn, Old Town, Milford and Greenfield.