DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK

CITY OF PORTLAN

BUILDING PERM

This is to certify that

AVESTA HOUSING DEVELOPMENT CORPORATION/Dean & Allyn Inc.

PERMIT ID: 2012-65641

has permission to install NFPA 13R sprinkler systems.

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise clsoed-in. 48 HOUR NOTICE IS REQUIRED. A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be procured prior to occupancy.

Fire Prevention Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY THERE IS A PENALTY FOR REMOVING THIS CARD

Located at

34 MOODY ST

CBL: 003 H001001

BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 (ONLY) or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in 6 months. If the project is not started or ceases for 6 months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

REQUIRED INSPECTIONS:

Final - Fire

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUPIED.

	•	be - Building or Use Permit 01 Tel: (207) 874-8703, Fax: (2		Permit No: 201265641	Date Applied For: 12/17/2012	CBL: 003 H001001
	ation of Construction:	Owner Name:	207) 874-871	Owner Address:		Phone:
	MOODY ST	AVESTA HOUSING I	DEVELOPM	307 CUMBERLAI	ND AVE	r none.
	iness Name:	Contractor Name:		Contractor Address:		Phone
		Dean & Allyn Inc.		P.O. Box 709, 32 1	Lewiston Rd Gray	(207) 657-5646
Less	see/Buyer's Name	Phone:		Permit Type: Fire Suppression	Water Based	
Pro	posed Use:		Propos	ed Project Description:		
		in two buildings on the same lot		1 NFPA 13R sprinkl	er systems.	
	ept: Zoning S ote:	tatus: Approved	Reviewer	: Marge Schmucka	l Approval D	ate: 12/18/2012 Ok to Issue: 🗹
	ept: Fire S ote:	tatus: Approved w/Conditions	Reviewer	: Ben Wallace Jr	Approval D	ate: 01/01/2013 Ok to Issue: ☑
1)	(ncluding alarm panels),	ts obstructions to, and requires a m fire department inlet connections, boiler rooms, mechanical rooms,	or fire protect	ion system control v	alves. It also prohib	its storage of
2)		st connection valves shall be provi ed with corrosion-resistant wire, c			therproof metal or ri	igid plastic
3)	A 4100 series Knox Box keyed.	is required for each building. A h	ninged 3200 se	ries Knox Box may	be installed if the bu	ilding is master
4)		em shall be maintained in accordantion Systems, 2008 edition.	nce with NFPA	25, Standard for In	spection, Testing and	d Maintenance of
5)	System acceptance and c Department. Call 874-8	ommissioning must be coordinated 703 to schedule.	d with alarm a	nd suppression syste	m contractors and th	e Fire
6)	Fire department connect	ion shall be one 2 1/2" inlet for each	n building.			
7)		l be maintained. Where the system has bee			ce or repair, the syste	em shall be
8)	Alarm and Signaling Coc approved fire alarm pane	system shall be provided in accordance. Sprinkler supervisory systems to central station. One smoke de e water flow alarm provided. A se	shall monitor in stector shall be	for water flow and sp located over the par	orinkler supervisory nel, a manual pull sta	signals via an at the
9)	the State Sprinkler permi	cordance with the City of Portland t(s) with RMS date and signature a e 10.1.2) shall be provided prior to	and the Contra	ctor's Material and		

City of Portland, Maine	- Building or Use	Permit Applicatio	Permit No:	Issue Date:	CBL:	
389 Congress Street, 04101					003 H001001	
Location of Construction:	Owner Name:		Owner Address:	Phone:		
34 MOODY ST	AVESTA HO	USING DEVELOPM	307 CUMBERL	AND AVE		
Business Name:	Contractor Name		Contractor Address		Phone	
	Dean & Allyn	Inc.	P.O. Box 709, 32	Lewiston Rd G	iray (207) 657-5646	
Lessee/Buyer's Name	Phone:		Permit Type:		Zoue:	
			Fire Alarm / Sup	pression	R6	
Past Use:	Proposed Use:		Permit Fee:	Cost of Work:	CEO District:	
16 affordable residential cond		dential condos in two	\$410.00		00.00 1	
two buildings on the same lot	buildings on th	he same lot	FIRE DEPT:	Approvou	SPECTION: le Group: Type:	
Proposed Project Description: Install a Water-based Fire Sup	opression System		Signature: BDD. PEDESTRIAN ACT Action: Appro	gnature: CT (P.A.D.) ed w/Conditions Denied		
			Signature:	Date:		
Permit Taken By: Idobson	Date Applied For: 12/17/2012		Zoning	g Approval		
1. This permit application d	oes not preclude the	Special Zone or Revie	ws Zon	ug Appeal	Historic Preservation	
Applicant(s) from meetin Federal Rules.		Shoreland	🗌 Variano	ce	Not in District or Landmark	
2. Building permits do not in septic or electrical work.	nclude plumbing,	Wetland	Miscellaneous Conditional Use		Does Not Require Review	
3. Building permits are void within six (6) months of t		Flood Zone			Requires Review	
False information may invalidate a building permit and stop all work		Subdivision	Interpretation		Approved	
		Site Plan	Approved		Approved w/Conditions	
		Maj Minor MM			Denied	
		Date: 17/10/1	7 Date:		Date:	

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

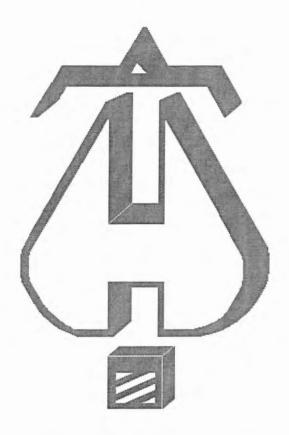
SIGNATURE OF APPLICANT	ADDRESS	DATE	PHONE
RESPONSIBLE PERSON IN CHARGE OF WORK, TITLE		DATE	PHONE

2012-65641

Water-Based Fire Suppression System Permit

If you or the property owner owes real estate or property taxes or user charges on any property within the city, payment arrangements must be made before permits of any kind are accepted.

School	
Installation address: Adams Redevelopment	_ CBL: <u>3- H-1</u>
Exact location: (within structure) Vesper St	
Type of occupancy(s) (NFPA & ICC):	
Building owner: AVISTA	
Managing Supervisor (RMS): DANA Stewart	License No: 26/
Supervisor phone: 657 # 5646	_E-mail: dsteway tedean and ally N. com
Installing contractor: Dean and allyn	_License No:262
Contractor phone: 657 5646	E-mail: hKing@Maine.rr.com
The suppression work to be done will be: New: Renov	ation: Addition to existing system:
	Permit no:
NFPA Standard this system is designed to: NFPA #13	REdition:
*Non-NFPA systems are not approved for use within the City of Portland.	COST OF WORK: 38100
Download a new copy of this document from	PERMIT FEE: # 416
www.portlandmaine.gov/fire for every submittal. Attach all working	(\$10 PER \$1,005 + \$30 FOR THE FIRST \$1,000)
documents and complete approved submittals as may be required by	DEC 17 2012
the State Fire Marshal's Office on electronic PDF's in addition to	
full sized plans.	Dept. of Building Inspections City of Portland Maine
Contractor shall verify location and type of all FDCs shall	
be approved in writing by the Fire Prevention Bureau.	


Submit all information to the Building Inspections Department, 389 Congress Street, Room 315, Portland, Maine 04101.

Prior to acceptance of any fire protection system, a complete commissioning and acceptance test must be coordinated with

all fire system contractors and the Fire Department, and proper documentation of such test(s) provided.

All installation(s) must comply with NFPA and the Fire Department Technical Standard(s).

	0/			
Applicant signature:	Harry	King	Date: (2-(2-12	

,

. . . Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

1	
	Job Name : ADAMS SCHOOL BUILDING A FIRST FLOOR Building : BUILDING A FIRST FLOOR CENTER Location : VESPER STREET PORTLAND MAINE System : ONE Contract : C121102 Data File : ADAMS SCHOOL BUILDING A FIRST FLOOR CENTER.WXF
- 1	

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

HYDRAULIC DESIGN INFORMATION SHEET

Name - ADAMS SCHOOL REDEVELOPMENT PROJECT Date - 11-1-12 Location - VESPER STREET PORTLAND MAINE System No. - ONE Building - BUILDING A FIRST FLOOR CENTER Contractor - DEAN AND ALLYN, INC. Contract No. - C121102 Calculated By - HARRY KING Drawing No. - 1 OF 2 Construction: (X) Combustible () Non-Combustible Ceiling Height 8' OCCUPANCY - HOUSING Type of Calculation: ()NFPA 13 Residential (X)NFPA 13R ()NFPA 13D S Number of Sprinklers Flowing: ()1 ()2 (X)4 () Y ()Other S Made by Date Т () Specific Ruling Ε Listed Flow at Start Point - 17 Gpm System Type Μ (X) Wet () Dry Listed Pres. at Start Point - 12 Psi () PreAction D MAXIMUM LISTED SPACING 18 x 18 () Deluge Sprinkler or Nozzle Domestic Flow Added E Gpm Make VIKING Model FREEDOM Additional Flow Added S Gpm Ι Elevation at Highest Outlet - 12 Feet Size 1/2" K-Factor 4.9 Temperature Rating 155 G Note:CUSHION: 7.12 PSI Ν At Test Gpm Required 54.0 Psi Required 36.8 Calculation Overhead 120 Underground 120 C-Factor Used: Summary Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - 6-2-2005 Rated Cap. Cap. Α Time of Test -@ Psi Elev. Т - 44 Ε Static (Psi) Elev. Well Residual (Psi) - 37 Other R Flow (Gpm) - 503 Proof Flow Gpm - 0 S Elevation P Location: MUNJOY AT MOODY STREETS Ρ Source of Information: PORTLAND WATER DEPT L Y

Page 1 Date 11-1-12

Fitting	gs Used Summary																				
DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR Date 11-1-12										2											
Fitting I Abbrev	Legend , Name	1/2	3/4	1	1¼	1½	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
E S T	NFPA 13 90' Standard Elbow NFPA 13 Swing Check NFPA 13 90' Flow thru Tee	1 0 3	2 0 4	2 5 5	3 7 6	4 9 8	5 11 10	6 14 12	7 16 15	8 19 17	10 22 20	12 27 25	14 32 30	18 45 35	22 55 50	27 65 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

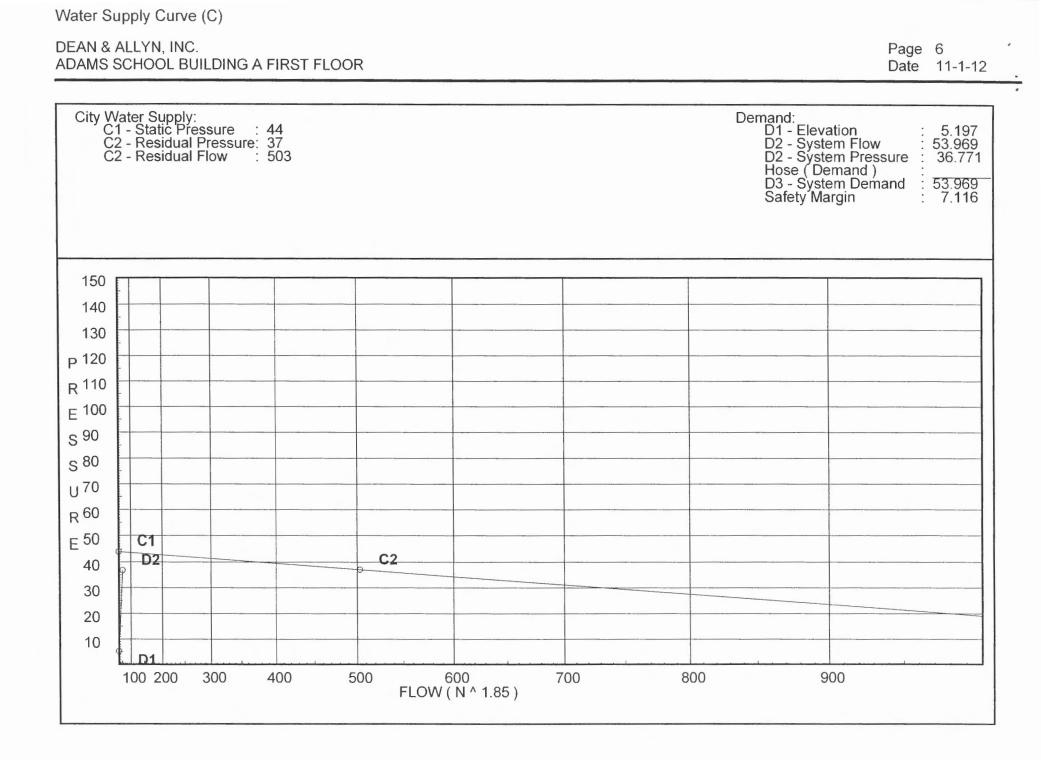
Pressure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

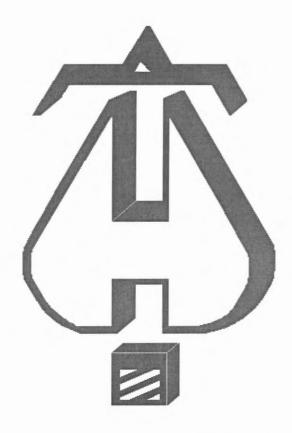
Page Date	3 11-1-12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1A	25.0	4.9	7.0	na	12.96	0.05	256	7.0
06	12.0	4.9	12.0	na	16.97	0.05	324	12.0
07	12.0	4.9	13.64	na	18.1	0.05	324	12.0
08	12.0	4.9	14.87	na	18.9	0.05	324	12.0
20	12.0		15.27	na				
21	12.0		15.93	na				
22	12.0		16.23	na				
15	12.0		19.88	na				
TR	7.0		24.52	na				
FF	0.0		36.2	na				
CTY	0.0		36.77	na				

The maximum velocity is 11.58 and it occurs in the pipe between nodes 22 and 15


Final Calculations - Hazen-Williams

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR


Page	4
Date	11-1-12

ADAINS	SCHOOL BUILDING A	TIKST FLOUR				Date 11-1-12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
1A to	12.96 1.049 120.0	1T 5.0 0.0	1.000 5.000	7.000 10.828		K Factor = 4.90
to 1	12.96 0.0583	0.0	6.000	0.350		Vel = 4.81
	0.0 12.96			18.178		K Factor = 3.04
06	16.97 1.049	1E 2.0	22.000	12.000		K Factor = 4.90
to	120.0	2T 10.0	12.000	0.0		
20	16.97 0.0961	0.0	34.000	3.266		Vel = 6.30
	0.0 16.97			15.266		K Factor = 4.34
07	18.10 1.049	1T 5.0	10.000	13.644		K Factor = 4.90
to	120.0	0.0	5.000	0.0		$V_{0} = 6.72$
20	<u>18.1 0.1081</u> 0.0	0.0	15.000	1.622		Vel = 6.72
	18.10			15.266		K Factor = 4.63
08	18.90 1.049	1T 5.0	4.000	14.871		K Factor = 4.90
to 21	120.0 18.9 0.1172	0.0 0.0	5.000 9.000	0.0 1.055		Vel = 7.02
21	0.0	0.0	0.000			
	18.90			15.926		K Factor = 4.74
20	35.07 1.38	1T 6.0 0.0	4.000 6.000	15.266 0.0		
to 22	120.0 35.07 0.0968	0.0	10.000	0.968		Vel = 7.52
	0.0					
	35.07			16.234		K Factor = 8.70
21 to	18.90 1.38 120.0	0.0 0.0	10.000 0.0	15.926 0.0		
22	18.9 0.0308	0.0	10.000	0.308		Vel = 4.05
22	35.07 1.38	1T 6.0	11.000	16.234		
to 15	120.0 53.97 0.2147	0.0 0.0	6.000 17.000	0.0 3.650		Vel = 11.58
15	0.0 1.38	1E 3.0	8.500	19.884		
to	120.0	0.0	3.000	2.166		
TR	53.97 0.2148	0.0	11.500	2.470		Vel = 11.58
TR to	0.0 1.38 120.0	1S 7.0 1Z 0.0	7.000 7.000	24.520 8.032		* Fixed loss = 5
FF	53.97 0.2607	0.0	14.000	3.650		Vel = 11.58
FF	0.0 4.1	3E 32.783	500.000	36.202		
to CTY	120.0 53.97 0.0011	0.0 0.0	32.783 532.783	0.0 0.569		Vel = 1.31
	0.0					

DEAN & A ADAMS S			FIRST FLOOR				Pa Da	ge 5 te 11-1-12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes *****
	53.97	-1-76			36.771		K Factor	r = 8.90

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

.

... Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

Job Name : ADAMS SCHOOL BUILDING A FIRST FLOOR Building : BUILDING A FIRST FLOOR CENTER Location : VESPER STREET PORTLAND MAINE System : ONE Contract : C121102 Data File : ADAMS SCHOOL BUILDING A FIRST FLOOR CENTER.WXF

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

HYDRAULIC DESIGN INFORMATION SHEET Name - ADAMS SCHOOL REDEVELOPMENT PROJECT Date - 11-1-12 Location - VESPER STREET PORTLAND MAINE Building - BUILDING A FIRST FLOOR CENTER System No. - ONE Contractor - DEAN AND ALLYN, INC. Contract No. - C121102 Drawing No. - 1 OF 2 Calculated By - HARRY KING D Construction: (X) Combustible () Non-Combustible Ceiling Height 8' OCCUPANCY - HOUSING Type of Calculation: ()NFPA 13 Residential (X)NFPA 13R ()NFPA 13D S Number of Sprinklers Flowing: ()1 ()2 (X)4 () Υ S ()Other Т Made by Date () Specific Ruling Ε Listed Flow at Start Point - 17 Gpm System Type М () Dry () PreAction (X) Wet Listed Pres. at Start Point - 12 Psi MAXIMUM LISTED SPACING 18 x 18 () Deluge D Sprinkler or Nozzle Domestic Flow Added Gpm Ε -Additional Flow Added Make VIKING Model FREEDOM Gpm S Elevation at Highest Outlet - 12 Feet Size 1/2" K-Factor 4.9 Т Note:CUSHION: 7.12 PSI G Temperature Rating 155 Ν Calculation Gpm Required 54.0 Psi Required 36.8 At Test Summary C-Factor Used: Overhead 120 Underground 120 Water Flow Test: Pump Data: Tank or Reservoir: W Α Date of Test - 6-2-2005 Rated Cap. Cap. Time of Test Т @ Psi Elev. - 44 Static (Psi) Elev. Ε Residual (Psi) - 37 Well R Other - 503 Proof Flow Gpm Flow (Gpm) - 0 Elevation S Location: MUNJOY AT MOODY STREETS Ρ Ρ Source of Information: PORTLAND WATER DEPT L Υ

Page 1

Date 11-1-12

DEAN	& ALLYN, INC. IS SCHOOL BUILDING A	FIRS	ST FL	DOR															age 2 ate 1	2 1-1-1:	2
Fitting L Abbrev.		1/2	3/4	1	1¼	11⁄2	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
E S T	NFPA 13 90' Standard Elbow NFPA 13 Swing Check NFPA 13 90' Flow thru Tee	1 0 3	2 0 4	2 5 5	3 7 6	4 9 8	5 11 10	6 14 12	7 16 15	8 19 17	10 22 20	12 27 25	14 32 30	18 45 35	22 55 50	27 65 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Fittings Used Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

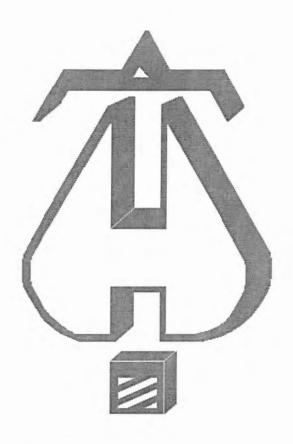
Page	3
Date	11-1-12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1A	25.0	4.9	7.0	na	12.96	0.05	256	7.0
06	12.0	4.9	12.0	na	16.97	0.05	324	12.0
07	12.0	4.9	13.64	na	18.1	0.05	324	12.0
08	12.0	4.9	14.87	na	18.9	0.05	324	12.0
20	12.0		15.27	na				
21	12.0		15.93	na				
22	12.0		16.23	na				
15	12.0		19.88	na				
TR	7.0		24.52	na				
FF	0.0		36.2	na				
CTY	0.0		36.77	na				

The maximum velocity is 11.58 and it occurs in the pipe between nodes 22 and 15

Final Calculations - Hazen-Williams

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR


Page 4 Date 11-1-12

ADAMS	SCHOOL BUILDING	A FIRST FLOOP	{		Date 11-1-12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv ****** Notes **** Pn
1A	12.96 1.049	1T 5.0	1.000	7.000	K Factor = 4.90
to 1	120.0 12.96 0.0583	0.0 0.0	5.000 6.000	10.828 0.350	Vel = 4.81
	0.0 12.96			18.178	K Factor = 3.04
06 to	16.97 1.049 120.0	1E 2.0 2T 10.0	22.000 12.000	12.000 0.0	K Factor = 4.90
20	16.97 0.0961	0.0	34.000	3.266	Vel = 6.30
	0.0 16.97			15.266	K Factor = 4.34
07 :0	18.10 1.049 120.0	1T 5.0 0.0	10.000 5.000	13.644 0.0	K Factor = 4.90
20	<u>18.1</u> 0.1081 0.0	0.0	15.000	1.622	Vel = 6.72
	18.10			15.266	K Factor = 4.63
08 to 21	18.90 1.049 120.0 18.9 0.1172	1T 5.0 0.0 0.0	4.000 5.000 9.000	14.871 0.0 1.055	K Factor = 4.90 Vel = 7.02
21	0.0 18.90	0.0	5.000	15.926	K Factor = 4.74
20	35.07 1.38 120.0	1T 6.0 0.0	4.000 6.000	15.266 0.0	
22	35.07 0.0968 0.0	0.0	10.000	0.968	Vel = 7.52
	35.07			16.234	K Factor = 8.70
21 o 22	18.90 1.38 120.0 18.9 0.0308	0.0 0.0 0.0	10.000 0.0 10.000	15.926 0.0 0.308	Vel = 4.05
22 22 0	35.07 1.38 120.0	1T 6.0 0.0	11.000 6.000	16.234 0.0	Voi 4.00
15	53.97 0.2147	0.0	17.000	3.650	Vel = 11.58
15 0	0.0 1.38 120.0	1E 3.0 0.0	8.500 3.000	19.884 2.166	
TR TR o	53.97 0.2148 0.0 1.38 120.0	0.0 1S 7.0 1Z 0.0	11.500 7.000 7.000	2.470 24.520 8.032	Vel = 11.58 * Fixed loss = 5
FF	53.97 0.2607	0.0	14.000	3.650	Vel = 11.58
FF O	0.0 4.1 120.0	3E 32.783 0.0	32.783	36.202 0.0	
CTY	53.97 0.0011	0.0	532.783	0.569	Vel = 1.31

0.0

	CHOOL		G A FIRST I	LOOR				Page 6 Date 11-1						
City Wa C1 C2 C2	ater Sup - Static - Residu - Residu	oly: Pressure Jal Pressu Jal Flow	: 44 re: 37 : 503				De	mand: D1 - Elevation : D2 - System Flow : 5 D2 - System Pressure : 3 Hose (Demand) : D3 - System Demand : 5 Safety Margin :	5.19 53.96 36.77 53.96 7.11					
150 F														
140														
130														
120														
110														
100														
90														
80														
70														
60														
50	C1 D2			C2										
40														
30														
20														
10	D1													
	100 200	300	400	500	600 W (N ^ 1.85)	700	800	900						

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

1

t

... Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

Building	: ADAMS SCHOOL BUILDING A FIRST FLOOR : BUILDING A FIRST FLOOR
Location	: VESPER STREET PORTLAND MAINE
System	: ONE
Contract	: C121102
Data File	: ADAMS SCHOOL BUILDING A FIRST FLOOR.WXF

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

HYDRAULIC DESIGN INFORMATION SHEET

Name - ADAMS SCHOOL REDEVELOPMENT PROJECT Date - 11-1-12 Location - VESPER STREET PORTLAND MAINE System No. - ONE Building - BUILDING A FIRST FLOOR Contractor - DEAN AND ALLYN, INC. Contract No. - C121102 Calculated By - HARRY KING I Construction: (X) Combustible () Non-Combustible Drawing No. - 1 OF 2 Ceiling Height 8' OCCUPANCY - HOUSING Type of Calculation: ()NFPA 13 Residential S (X)NFPA 13R ()NFPA 13D Y Number of Sprinklers Flowing: ()1 ()2 (X)4 () S ()Other Т ()Specific Ruling Made by Date Ε М Listed Flow at Start Point - 20 System Type Gpm Listed Pres. at Start Point - 16.7 Psi (X) Wet () Dry D MAXIMUM LISTED SPACING 20 x 20 () Deluge () PreAction Domestic Flow Added Ε Gpm Sprinkler or Nozzle -Additional Flow Added S _ Make VIKING Model FREEDOM Gpm Ι Elevation at Highest Outlet - 12 Feet Size 1/2" K-Factor 4.9 Note:CUSHION: 5.8 PSI G Temperature Rating 155 Ν Calculation Gpm Required 40.3 Psi Required 38.1 At Test Summary C-Factor Used: Overhead 120 Underground 120 W Water Flow Test: Pump Data: Tank or Reservoir: Date of Test - 6-2-2005 Rated Cap. Cap. Α Т Time of Test -@ Psi Elev. - 44 Ε Static (Psi) Elev. R Residual (Psi) - 37 Other Well Flow (Gpm) - 503 Proof Flow Gpm - 0 S Elevation P Location: MUNJOY AT MOODY STREETS Ρ Ŀ Source of Information: PORTLAND WATER DEPT Y

Page 1 Date 11-1-12

DEAN	I & ALLYN, INC. IS SCHOOL BUILDING A	FIRS	ST FL	OOR															age 2 ate 1	2 1-1-12	2
Fitting L Abbrev	Legend . Name	1/2	3/4	1	1¼	1½	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
E S T	NFPA 13 90' Standard Elbow NFPA 13 Swing Check NFPA 13 90' Flow thru Tee	1 0 3	2 0 4	2 5 5	3 7 6	4 9 8	5 11 10	6 14 12	7 16 15	8 19 17	10 22 20	12 27 25	14 32 30	18 45 35	22 55 50	27 65 60	35 71	40 81	45 91	50 101	61 121

Units Summary

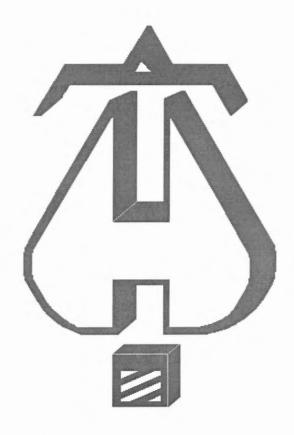
Fittings Used Summary

Inches
Feet
US Gallons per Minute
Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Flessure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR


ADAMS	S SCHOOL B	UILDING A FIR	ST FLOOR				Date	11-1-12
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1A 04 05 4.5 14 15 TR	25.0 12.0 12.0 12.0 12.0 12.0 7.0	4.9 4.9 4.9	7.0 16.7 17.18 17.35 17.85 23.99 27.6	na na na na na na	12.96 20.02 20.31	0.05 0.05 0.05	256 400 400	7.0 16.7 16.7
FF CTY	0.0 0.0		37.76 38.1	na na				

Page 3

The maximum velocity is 8.65 and it occurs in the pipe between nodes 14 and 15

Final Ca	liculations - Hazen-	Williams				
	ALLYN, INC. SCHOOL BUILDING	A FIRST FLOOF	2			Page 4 Date 11-1-12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
1.0	10.06 1.040	17 5 0	1 000	7 000		K Feeter = 4.00
1A to 1	12.96 1.049 120.0 12.96 0.0583	1T 5.0 0.0 0.0	1.000 5.000 6.000	7.000 10.828 0.350		K Factor = 4.90 Vel = 4.81
	0.0 12.96	0.0	0.000	18.178		K Factor = 3.04
04 to	20.02 1.38 120.0	1T 6.0 0.0	13.000 6.000	16.700		K Factor = 4.90
4.5	<u>20.02</u> 0.0343 0.0	0.0	19.000	0.652		Vel = 4.29
	20.02			17.352		K Factor = 4.81
05 to	20.31 1.38 120.0	1T 6.0 0.0	13.000 6.000	17.180 0.0		K Factor = 4.90
14	<u>20.31</u> 0.0352 0.0	0.0	19.000	0.669		Vel = 4.36
	20.31		4.4.500	17.849		K Factor = 4.81
4.5 to 14	20.02 1.38 120.0 20.02 0.0343	0.0 0.0 0.0	14.500 0.0 14.500	17.352 0.0 0.497		Vel = 4.29
14 14 to	20.31 1.38 120.0	1T 6.0 0.0	43.000	17.849 0.0		VOI - 4.20
15	40.33 0.1253	0.0	49.000	6.140		Vel = 8.65
15 to	0.0 1.38 120.0	1E 3.0 0.0	8.500 3.000	23.989 2.166		
TR TR	40.33 0.1252 0.0 1.38	0.0 1S 7.0	<u>11.500</u> 7.000	<u> </u>		Vel = 8.65
to FF	120.0 40.33 0.1521	1Z 0.0 0.0	7.000 14.000	8.032 2.130		* Fixed loss = 5 Vel = 8.65
FF to	0.0 4.1 120.0	4E 43.71 0.0	500.000 43.710	37.757 0.0		
CTY	40.33 0.0006 0.0	0.0	543.710	0.339		Vel = 0.98
	40.33			38.096		K Factor = 6.53

Water Supply Curve (C) DEAN & ALLYN, INC. Page 5 ADAMS SCHOOL BUILDING A FIRST FLOOR Date 11-1-12 Demand: D1 - Elevation D2 - System Flow D2 - System Pressure Hose (Demand) D3 - System Demand Safety Margin City Water Supply: C1 - Static Pressure : 44 C2 - Residual Pressure: 37 C2 - Residual Flow : 503 5.197 40.334 38.096 40.334 5.839 -150 140 130 P 120 R 110 E 100 S 90 S ⁸⁰ U 70 R 60 E 50 C1 D2 C2 40 30 20 10 D1 900 100 200 300 400 500 700 800 600 FLOW (N ^ 1.85)

4

... Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

Job Name : ADAMS SCHOOL BUILDING A FIRST FLOOR Building : BUILDING A FIRST FLOOR Location : VESPER STREET PORTLAND MAINE System : ONE Contract : C121102 Data File : ADAMS SCHOOL BUILDING A FIRST FLOOR.WXF

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

t

Page 1 Date 11-1-12

HYDRAULIC DESIGN INFORMATION SHEET

Loc Bu Cor Ca Cor	me - ADAMS SCHOOL REDEVELOPMEN cation - VESPER STREET PORTLA lding - BUILDING A FIRST FLOO ntractor - DEAN AND ALLYN, INC culated By - HARRY KING nstruction: (X) Combustible CUPANCY - HOUSING	AND MAINE DR Si C. Co Di	Date - 11-1-12 ystem No ONE ontract No C121102 rawing No 1 OF 2 Ceiling Height 8'
S Y S T	Type of Calculation: ()NFPA Number of Sprinklers Flowing ()Other ()Specific Ruling		
E M E S I G N	Listed Flow at Start Point Listed Pres. at Start Point MAXIMUM LISTED SPACING 20 Domestic Flow Added Additional Flow Added Elevation at Highest Outlet Note:CUSHION: 5.8 PSI	z - 16.7 Psi (X)) x 20 () - Gpm Spi - Gpm Make VII z - 12 Feet Size 1/2	Deluge () PreAction rinkler or Nozzle KING Model FREEDOM
	culation Gpm Required 40.3 mary C-Factor Used:	Psi Required 38.1 Overhead 120	
W A T E R S	Water Flow Test: Date of Test - 6-2-2005 Time of Test - Static (Psi) - 44 Residual (Psi) - 37 Flow (Gpm) - 503 Elevation - 0	© Psi Elev. Other	Tank or Reservoir: Cap. Elev. Well Proof Flow Gpm
P P L Y	Location: MUNJOY AT MOODY ST Source of Information: PORTL		

Fitting	Legend																				
Abbrev	v. Name	1/2	3/4	1	1¼	11⁄2	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
Ē	NFPA 13 90' Standard Elbow NFPA 13 Swing Check	1 0	2 0	2 5	3 7	4 9	5 11	6 14	7 16	8 19	10 22	12 27	14 32	18 45	22 55	27 65	35	40	45	50	61
Г	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	12

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

1.1

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

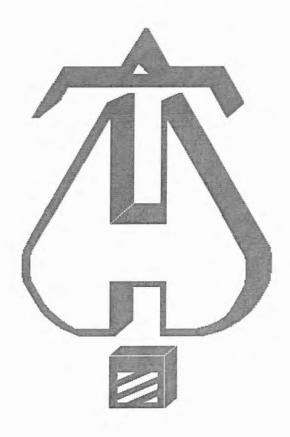
Pressure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A FIRST FLOOR

Page 3 Date 11-1-12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1A	25.0	4.9	7.0	na	12.96	0.05	256	7.0
04	12.0	4.9	16.7	na	20.02	0.05	400	16.7
05	12.0	4.9	17.18	na	20.31	0.05	400	16.7
4.5	12.0		17.35	na				
14	12.0		17.85	na				
15	12.0		23.99	na				
TR	7.0		27.6	na				
FF	0.0		37.76	na				
CTY	0.0		38.1	na				

The maximum velocity is 8.65 and it occurs in the pipe between nodes 14 and 15


Final Calculations - Hazen-Williams

DEAN & ALLYN, INC.

	ALLYN, INC. SCHOOL BUILDING	A FIRST FLOOF	२			Page 4 Date 11-1-12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
1A to 1	12.96 1.049 120.0 12.96 0.0583	1T 5.0 0.0 0.0	1.000 5.000 6.000	7.000 10.828 0.350		K Factor = 4.90 Vel = 4.81
04	0.0 12.96 20.02 1.38	1T 6.0	13.000	18.178 16.700		K Factor = 3.04 K Factor = 4.90
to 4.5	120.0 20.02 0.0343 0.0 20.02	0.0 0.0	6.000 19.000	0.0 0.652 17.352		Vel = 4.29 K Factor = 4.81
05 to 14	20.31 1.38 120.0 20.31 0.0352	1T 6.0 0.0 0.0	13.000 6.000 19.000	17.180 0.0 0.669		K Factor = 4.90 Vel = 4.36
4.5	0.0 20.31 20.02 1.38	0.0	14.500	17.849 17.352		K Factor = 4.81
to 14 14	120.0 20.02 0.0343 20.31 1.38	0.0 0.0 1T 6.0	0.0 14.500 43.000	0.0 0.497 17.849		Vel = 4.29
to 15	120.0 40.33 0.1253	0.0 0.0	6.000 49.000	0.0 6.140		Vel = 8.65
15 to TR	0.0 1.38 120.0 40.33 0.1252	1E 3.0 0.0 0.0	8.500 3.000 11.500	23.989 2.166 1.440		Vel = 8.65
TR to FF	0.0 1.38 120.0 40.33 0.1521	1S 7.0 1Z 0.0 0.0	7.000 7.000 14.000	27.595 8.032 2.130		* Fixed loss = 5 Vel = 8.65
FF to CTY	0.0 4.1 120.0 40.33 0.0006	4E 43.71 0.0 0.0	500.000 43.710 543.710	37.757 0.0 0.339		Vel = 0.98
	0.0 40.33			38.096		K Factor = 6.53

AMS S		DL BUIL		FIRST FL	OOR							C	Page 5 Date 11-
City W C1 C2 C2	ater Sı I - Stat 2 - Res 2 - Res	upply: ic Press idual Pr idual Fl	sure : essure: ow :	44 37 503						De	emand: D1 - Ele D2 - Sy D2 - Sy Hose (D3 - Sy Safety I	evation stem Flow stem Pressu Demand) stem Demar Margin	5. 40. 38 nd 40. 5.
150 r			10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -				1						
140	-							 					
130													
120													
110	_												
100	-							 					
90	-												
80	_												
70									1900 - M.				
60 50	C1												
40	D2				c	2		 	1715			_	
30	-										- 4 L		
20								 					
10													n,
1	100 2	00 2	00	400	500		600 (N ^ 1.85	 00		00	- I	900	

.

... Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

Job Name : ADAMS SCHOOL BUILDING A SECOND FLOOR Building : BUILDING A SECOND FLOOR Location : VESPER STREET PORTLAND MAINE System : ONE Contract : C121102 Data File : ADAMS SCHOOL BUILDING A SECOND FLOOR.WXF

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR

HYDRAULIC DESIGN INFORMATION SHEET Name - ADAMS SCHOOL REDEVELOPMENT PROJECT Date - 11-1-12 Location - VESPER STREET PORTLAND MAINE Building - BUILDING A SECOND FLOOR System No. - ONE Contractor - DEAN AND ALLYN, INC. Contract No. - C121102 Calculated By - HARRY KING Drawing No. - 1 OF 2 Construction: (X) Combustible () Non-Combustible Ceiling Height 8' OCCUPANCY - HOUSING Type of Calculation: ()NFPA 13 Residential (X)NFPA 13R ()NFPA 13D Number of Sprinklers Flowing: ()1 ()2 (X)4 () ()Other () Specific Ruling Made by Date Listed Flow at Start Point - 13 Gpm System Type Listed Pres. at Start Point - 10.6 Psi () Dry (X) Wet MAXIMUM LISTED SPACING 16 x 16 () PreAction () Deluge Domestic Flow Added Gpm Sprinkler or Nozzle Additional Flow Added Gpm Make VIKING Model FREEDOM Elevation at Highest Outlet - 20 Feet Size 1/2" K-Factor 4.0 Note:CUSHION: 7.9PSI Temperature Rating 155 Calculation Gpm Required 39.7 Psi Required 36.0 At Test Summary C-Factor Used: Overhead 120 Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: Date of Test - 6-2-2005 Rated Cap. Cap. Time of Test @ Psi Elev. - 44 Static (Psi) Elev.

> Well Proof Flow Gpm

Page 1

Date 11-1-12

Residual (Psi) - 37 Other R - 503 Flow (Gpm) S Elevation - 0 P Location: MUNJOY AT MOODY STREETS Ρ

L Source of Information: PORTLAND WATER DEPT

Y

S

Υ

S

Т

Ε

Μ

D

Ε

S

Ι

G

Ν

W

Α

т

E

	I & ALLYN, INC. IS SCHOOL BUILDING A	SEC	OND	FLOC	R													Pa Da	ige 2 ate 1	2 1-1-12	2
	Legend . Name	1/2	3/4	1	1¼	1½	2	21/2	3	3½	4	5	6	8	10	12	14	16	18	20	24
E S T	NFPA 13 90' Standard Elbow NFPA 13 Swing Check NFPA 13 90' Flow thru Tee	1 0 3	2 0 4	2 5 5	3 7 6	4 9 8	5 11 10	6 14 12	7 16 15	8 19 17	10 22 20	12 27 25	14 32 30	18 45 35	22 55 50	27 65 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Fittinge Llead Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR

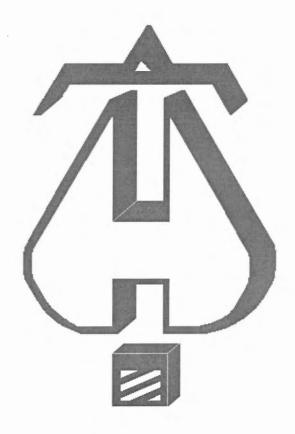
Page	3
Date	11-1-12

Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
25.0	4.9	7.0	na				7.0
20.0	4	10.86	na	13.18	0.05	256	10.6
	4	10.6	na	13.02	0.05	256	10.6
				13.5	0.05	256	10.6
				•			
		25.0 4.9 20.0 4 20.0 4 20.0 4 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0 12.0 0 12.0 0 12.0 0 12.0 0 12.0 0 12.0 0 12.0 0 0.0 0	Actual 25.0 4.9 7.0 20.0 4 10.86 20.0 4 10.6 20.0 4 11.38 12.0 15.23 12.0 15.79 12.0 15.59 12.0 16.05 12.0 22.01 7.0 25.57 0.0 35.67	Actual 25.0 4.9 7.0 na 20.0 4 10.86 na 20.0 4 10.6 na 20.0 4 10.6 na 20.0 4 11.38 na 12.0 15.23 na 12.0 14.95 na 12.0 15.79 na 12.0 15.59 na 12.0 16.05 na 12.0 22.01 na 12.0 35.67 na	ActualActual25.04.97.0na12.9620.0410.86na13.1820.0410.6na13.0220.0411.38na13.512.015.23na13.512.015.79na12.012.015.59na12.012.016.05na12.012.022.01na12.012.035.67na12.0	Actual Actual Actual 25.0 4.9 7.0 na 12.96 0.05 20.0 4 10.86 na 13.18 0.05 20.0 4 10.6 na 13.02 0.05 20.0 4 10.6 na 13.02 0.05 20.0 4 11.38 na 13.5 0.05 20.0 4 11.38 na 13.5 0.05 12.0 15.23 na 12.0 15.79 na 12.0 15.79 na 12.0 15.59 na 12.0 16.05 na 12.0 12.0 22.01 na 12.0 25.57 na 0.0 35.67 na 12.0	Actual Actual 25.0 4.9 7.0 na 12.96 0.05 256 20.0 4 10.86 na 13.18 0.05 256 20.0 4 10.6 na 13.02 0.05 256 20.0 4 11.38 na 13.5 0.05 256 20.0 4 11.38 na 13.5 0.05 256 20.0 4 15.23 na 13.5 0.05 256 12.0 15.79 na 12.0 15.59 na 12.0 15.59 na 12.0 16.05 na 12.0 22.01 na 12.0 25.57 na 0.0 35.67 na 0.0 35.67 na 0.0

The maximum velocity is 8.52 and it occurs in the pipe between nodes 14 and 15

Final Ca	alculations	- Hazen-	Williams
----------	-------------	----------	----------

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOO


Page	4			
Data	11	1	10	

ADAMS	SCHOOL BUILDING	Date 11-1-12				
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
1A	12.96 1.049	1T 5.0	1.000	7.000		K Factor = 4.90
to 1	120.0 12.96 0.0583	0.0 0.0	5.000 6.000	10.828 0.350		Vel = 4.81
	0.0 12.96			18.178		K Factor = 3.04
01	13.18 1.049	1T 5.0	8.000	10.859		K Factor = 4.00
to 10	120.0 13.18 0.0601	1E 2.0 0.0	7.000 15.000	3.465 0.902		Vel = 4.89
	0.0 13.18			15.226		K Factor = 3.38
02 to	13.02 1.049 120.0	1T 5.0 1E 2.0	8.000 7.000	10.600 3.465		K Factor = 4.00
11	13.02 0.0588	0.0	15.000	0.882		Vel = 4.83
	0.0 13.02			14.947		K Factor = 3.37
03 to	13.50 1.049 120.0	1T 5.0 1E 2.0	8.000 7.000	11.382 3.465		K Factor = 4.00
12	13.5 0.0629	0.0	15.000	0.943		Vel = 5.01
	0.0 13.50			15.790		K Factor = 3.40
10 to	13.18 1.38 120.0	2T 12.0 0.0	11.300 12.000	15.226 0.0		
13	13.18 0.0158	0.0	23.300	0.369		Vel = 2.83
	0.0 13.18			15.595		K Factor = 3.34
11 to	13.02 1.049 120.0	1T 5.0 0.0	6.000 5.000	14.947 0.0		
13	13.02 0.0589 0.0	0.0	11.000	0.648		Vel = 4.83
	13.02			15.595		K Factor = 3.30
12 to	13.50 1.38 120.0	2T 12.0 0.0	3.500 12.000	15.790 0.0		
14	13.5 0.0165	0.0	15.500	0.256		Vel = 2.90
	0.0 13.50			16.046		K Factor = 3.37
13	26.20 1.38	0.0	8.000	15.595		
to 14	120.0 26.2 0.0564	0.0 0.0	0.0 8.000	0.0 0.451		Vel = 5.62
14	13.50 1.38	1T 6.0 0.0	43.000 6.000	16.046 0.0		
to 15	120.0 39.7 0.1217	0.0	49.000	5.962		Vel = 8.52

Final	Calculati	ons - F	lazen-W	/illiams
-------	-----------	---------	---------	----------

DEAN &								Page 5
Hyd. Ref.	Qa	. BUILDING A Dia. "C"	Fitti	ng	Pipe Ftng's	Pt Pe	Pt Pv	Date 11-1-12
Point	Qt	Pf/Ft	Eqv	. Ln.	Total	Pf	Pn	
15 to	0.0	1.38 120.0	1E	3.0 0.0	8.500 3.000	22.008 2.166		
TR	39.7	0.1217		0.0	11.500	1.399		Vel = 8.52
TR to FF	0.0 39.7	1.38 120.0 0.1477	1S 1Z	7.0 0.0 0.0	7.000 7.000 14.000	25.573 8.032 2.068		* Fixed loss = 5 Vel = 8.52
FF to CTY	0.0 39.7	4.1 120.0 0.0006	4E	43.71 0.0 0.0	500.000 43.710 543.710	35.673 0.0 0.329		Vel = 0.96
	0.0 39.70					36.002		K Factor = 6.62

Water Supply Curve (C)	
DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR	Page 6 Date 11-1-12
City Water Supply: C1 - Static Pressure : 44 C2 - Residual Pressure: 37 C2 - Residual Flow : 503	Demand: D1 - Elevation : 8.662 D2 - System Flow : 39.699 D2 - System Pressure : 36.002 Hose (Demand) : D3 - System Demand : 39.699 Safety Margin : 7.934
150 140 130 130 P 120 130 R 110 130 E 100 130 S 90 130 S 90 130 S 80 130 U 70 130 R 60 130 E 50 C1 40 D2 30 130 20 100 10 D1	
100 200 300 400 500 600 700 FLOW (N ^ 1.85)	800 900

۱

... Fire Protection by Computer Design

DEAN & ALLYN, INC. PO BOX 709 116 LEWISTON ROAD GRAY, MAINE 04039 207-657-5646

Job Name : ADAMS SCHOOL BUILDING A SECOND FLOOR Building : BUILDING A SECOND FLOOR Location : VESPER STREET PORTLAND MAINE System : ONE Contract : C121102 Data File : ADAMS SCHOOL BUILDING A SECOND FLOOR.WXF

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR

Name - ADAMS SCHOOL REDEVELOPMENT PROJECT Date - 11-1-12 Location - VESPER STREET PORTLAND MAINE Building - BUILDING A SECOND FLOOR System No. - ONE Contractor - DEAN AND ALLYN, INC. Contract No. - C121102 Calculated By - HARRY KING Dra Construction: (X) Combustible () Non-Combustible Drawing No. - 1 OF 2 Ceiling Height 8' OCCUPANCY - HOUSING Type of Calculation: ()NFPA 13 Residential (X)NFPA 13R ()NFPA 13D S Y Number of Sprinklers Flowing: ()1 ()2 (X)4 () ()Other S Made by Date Т () Specific Ruling Ε Listed Flow at Start Point - 13 System Type Gpm Μ Listed Pres. at Start Point - 10.6 Psi (X) Wet () Dry MAXIMUM LISTED SPACING 16 x 16 () Deluge () PreAction D Sprinkler or Nozzle Ε Domestic Flow Added Gpm -Make VIKING Model FREEDOM Additional Flow Added Gpm S Elevation at Highest Outlet - 20 Feet Size 1/2" K-Factor 4.0 Ι Temperature Rating 155 Note:CUSHION: 7.9PSI G Ν Calculation Gpm Required 39.7 At Test Psi Required 36.0 Overhead 120 Underground 140 Summary C-Factor Used: Pump Data: Tank or Reservoir: Water Flow Test: W Rated Cap. Date of Test - 6-2-2005 Cap. Α Time of Test -@ Psi Elev. Т E Static (Psi) - 44 Elev. Well Residual (Psi) - 37 Other R - 503 Proof Flow Gpm Flow (Gpm) - 0 S Elevation Ρ Location: MUNJOY AT MOODY STREETS Ρ Source of Information: PORTLAND WATER DEPT L Y

HYDRAULIC DESIGN INFORMATION SHEET

Pressure / Flow Summary - STANDARD

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR

Page	3
Date	11-1-12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1A	25.0	4.9	7.0	na	12.96	0.05	256	7.0
01	20.0	4	10.86	na	13.18	0.05	256	10.6
02	20.0	4	10.6	na	13.02	0.05	256	10.6
03	20.0	4	11.38	na	13.5	0.05	256	10.6
10	12.0		15.23	na				
11	12.0		14.95	na				
12	12.0		15.79	na				
13	12.0		15.59	na				
14	12.0		16.05	na	•			
15	12.0		22.01	na				
TR	7.0		25.57	na				
FF	0.0		35.67	na				
СТҮ	0.0		36.0	na				

The maximum velocity is 8.52 and it occurs in the pipe between nodes 14 and 15

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR

Page	4
Date	11-1-12

	SCHOOL BUILDING A					Date 11-1-12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes ******
1A	12.96 1.049	1T 5.0	1.000	7.000		K Factor = 4.90
to	12.90 1.049	0.0	5.000	10.828		K Factor - 4.90
1	12.96 0.0583	0.0	6.000	0.350		Vel = 4.81
	0.0 12.96			18.178		K Factor = 3.04
01	13.18 1.049	1T 5.0	8.000	10.859		K Factor = 4.00
to	120.0	1E 2.0	7.000	3.465		
10	13.18 0.0601 0.0	0.0	15.000	0.902		Vel = 4.89
	13.18			15.226		K Factor = 3.38
02	13.02 1.049	1T 5.0	8.000	10.600		K Factor = 4.00
to 11	120.0 13.02 0.0588	1E 2.0 0.0	7.000 15.000	3.465 0.882		Vel = 4.83
11	0.0	0.0	13.000	0.002		Vei - 4.00
	13.02			14.947		K Factor = 3.37
03	13.50 1.049	1T 5.0	8.000	11.382		K Factor = 4.00
to 12	120.0 13.5 0.0629	1E 2.0 0.0	7.000 15.000	3.465 0.943		Vel = 5.01
12	0.0	0.0	10.000	0.010		0.01
	13.50			15.790		K Factor = 3.40
10	13.18 1.38	2T 12.0	11.300	15.226		
:o 13	120.0 13.18 0.0158	0.0 0.0	12.000 23.300	0.0 0.369		Vel = 2.83
	0.0				_	
	13.18			15.595		K Factor = 3.34
11 0	13.02 1.049 120.0	1T 5.0 0.0	6.000 5.000	14.947 0.0		
13	13.02 0.0589	0.0	11.000	0.648		Vel = 4.83
	0.0					
10	13.02	0 T 40.0	0.500	15.595		K Factor = 3.30
12 0	13.50 1.38 120.0	2T 12.0 0.0	3.500 12.000	15.790 0.0		
14	13.5 0.0165	0.0	15.500	0.256		Vel = 2.90
	0.0			16.046		K Foster = 2.27
13	13.50 26.20 1.38	0.0	8.000	16.046 15.595		K Factor = 3.37
0	120.0	0.0	0.0	0.0		
14	26.2 0.0564	0.0	8.000	0.451		Vel = 5.62
14	13.50 1.38	1T 6.0	43.000	16.046		
0	120.0	0.0	6.000	0.0		

DEAN & ALLYN, INC. 1

	DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR						Page 5 Date 11-1-12		
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittii o Eqv	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******	Notes *****
15 to TR	0.0 39.7	1.38 120.0 0.1217	1E	3.0 0.0 0.0	8.500 3.000 11.500	22.008 2.166 1.399		Vel = 8	.52
TR to FF	0.0 39.7	1.38 120.0 0.1477	1S 1Z	7.0 0.0 0.0	7.000 7.000 14.000	25.573 8.032 2.068		* Fixed I Vel = 8	
FF to CTY	0.0 39.7	4.1 120.0 0.0006	4E	43.71 0.0 0.0	500.000 43.710 543.710	35.673 0.0 0.329		Vel = 0	.96
	0.0 39.70					36.002		K Factor	= 6.62

Water Supply Curve (C)

DEAN & ALLYN, INC. ADAMS SCHOOL BUILDING A SECOND FLOOR Page 6 Date 11-1-12

City Water Supply: C1 - Static Pressure : 44 C2 - Residual Pressure: 37 C2 - Residual Flow : 503								Demand: D1 - Elevation : 8.662 D2 - System Flow : 39.699 D2 - System Pressure : 36.002 Hose (Demand) : D3 - System Demand : 39.699 Safety Margin : 7.934		
150										
140										
130										
P 120										
R 110										
E 100			-							
S 90										
S ⁸⁰	-									
U ⁷⁰										
R ⁶⁰										
E ⁵⁰	C1			C2						
40	D2									
30										
20	-									
10 0	D1									
100 200 300 400 500 600 700 800 900 FLOW (N ^ 1.85)										